
CALIBRATION OF THE UVX LNLS STORAGE RING OPTICS USING A
LINEAR RESPONSE MATRIX THEORY

Liu Lin and A. L. Xavier Jr+, LNLS, Campinas, Brazil.

                                                          
+E-mail: xavier@lnls.br

Abstract

We present initial results of the optics calibration
project of the LNLS UVX electron storage ring by the
use of the response matrix formalism.

1  INTRODUCTION
Motivated by recent works in the literature [1], the
Accelerator Physics Group of the LNLS is currently
developing a plan for the UVX optics calibration
through a linear response formalism known as response
matrix theory. The response matrix is a well-behaved
function of the machine parameters. Besides optics
parameters, the procedure is used to obtain values for
the calibration of the orbit correction system, that is,
BPM and steering magnet gains.
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where ∆x j
m is the orbit change in the j-th BPM in the m

plane after a small kick ∆θi
k in the i-th steering magnet

in the k plane. In the linear approximation, one
assumes small coupling between the planes such that
the matrix is close to zero for k m≠ .  An optics
calculation program is used to determine the machine
optics functions and the response matrix model. For
most practical purposes, the MAD program [2] is a
convenient tool. A figure of merit function is then
defined
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where [p] represents all parameters entering in the

calibration, M is the experimental matrix and σ ij
2

 is

the error associated to the matrix elements. From the
numerical point of view, the essence of this work is
summarized in the following way: given the
experimental matrix, find all the corrections, [ ]∆p , to
all relevant parameters in such a way that the model
matrix is as close as possible to the experimental one.
As one approaches the minimum, the chi-squared
function ideally gets close to the actual number of
degrees of freedom of the system.

2  ASSOCIATED ERRORS
In previous works the matrix error is taken as the noise
level at each BPM [1]. Given the definition of the
experimental response matrix, the error associated to
each of its elements is given by the function
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whereσ BMP  is the noise level of the monitors

(admitted the same for all monitors) and σ θ  the

standard deviation associated to the corrector system
(also assumed the same to all steering magnets). This
last equation means that, even if the noise level of the
BPM were zero (ideal monitors), the experimental
matrix would suffer from the uncertainty associated to
each corrector strength. However, the noise level of the
steering magnets is understandably energy-dependent.
The matrix error can be easily measured by taking
several measurements of the matrix elements for a
given steering magnet and then finding the standard
deviation from the average value. For the UVX ring of
the LNLS machine, at the energy 1.37 GeV, the
corrector system has little effect upon the matrix
elements. The same is not true at lower energies. e. g.,
300 MeV, where we could find a significant effect of
the steering magnet errors (see Figure 1).
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Figure 1: Measured standard deviation of the vertical
response matrix for the corrector ACV03A at 300 MeV
in terms of the module of the matrix element (effect of
the corrector noise for large element values).
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In this report we will present results in the high-energy
range. Therefore, the response matrix error is given by

σ
σ

θij
BPM≈

∆
.

For the LNLS machine, this standard deviation is
around 7mm/rad, given initial corrector kicks of 0.2
mrad. For a certain obtained calibration, therefore, the
chi-squared value increases as the intensity of the
corrector kickers decreases. Beyond a certain level,
however, other systematic errors may perturb the

minimum of χ 2  such as non-linear effects in the BPM

system.

3  CHOOSING THE PARAMETERS
Due to numerical limitations, the list of parameters
entering in the optics calibration can not include all
possible elements. Moreover, the number of
parameters should be smaller than the number of
available data, if the calibration process is to have
statistical value. The LNLS machine has a system of 36
quadrupoles divided into 14 independent families, 23
monitors, 24 and 18 steering magnets for vertical and
horizontal correction respectively. We have chosen to
calibrate for quadrupole and dipole gradient errors
(there are 12 dipoles), steering magnets and corrector
gains and eventually the energy-shift [1] associated to
the correctors in the horizontal plane. The energy-shift
correction at each corrector ∆ς  is easily included

since it is given by the simple formula
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where η j
x is the dispersion function at the j-th

corrector, α is the momentum compaction factor and L
the machine circumference. We said above
‘eventually’ because this energy-shift factor is a
function of the model lattice and, therefore, should
consistently be accounted for in the model horizontal
matrix by the optics calculation program. We report
that the inclusion of the corrector energy-shifts as
fitting parameters showed little effect upon the final
value of the minimum. The final total number of
parameters used in the fitting was 131 while the
number of data points (elements of the matrix) is 966.

4  SEARCHING FOR THE MINIMUM
Compared to other works [1], we have used a slightly
different numerical procedure in order to determine the
characteristic linear system of equations for the
parameter calibration [3]. The set of parameter
corrections is obtained by solving the linear system of
equations
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where the index n runs over all possible parameters.
Convergence is attained by singular decomposition
methods.[3]. The matrix C may present singular value
as a result of physical or numerical degeneracies. A
well known example is the fact that multiplying all
monitor gains by a certain factor while dividing
corrector gains by the same factor leaves the matrix
unchanged. The calibration of gains produces therefore
relative values, the above mentioned factor should be
later adjusted, for instance, by suitably matching the
experimental and model dispersion functions.

5  SOME INITIAL RESULTS
The response matrix of the UVX-LNLS storage ring
was measured several times during the machine study
sessions in 1998 at the highest energy of 1.37 GeV and
average current of 100 mA. Some of the measurements
were performed with sextupoles turned off in order to
avoid non-linear quadrupole components in the model
lattice. Moreover, coupling effects were also
minimized. Initially, we have imagined that quadrupole
fitting would be straightforward. Such impressions
proved itself naïve in face of the average distance
between the experimental and model matrices,
980mm/rad in the vertical plane and 450 mm/rad in the
horizontal one. This was far above the expected value
of the matrix standard deviation even accounting for
kick standard deviations and indicated that the
inclusion of BPM and corrector gains was mandatory
before quadrupole fitting [4]. The fitting was therefore
performed in two stages, BPM and corrector gains first
and then quadrupole and energy-shifts. We observed
an asymmetry in the value of the response matrix
elements as produced by either positive or negative
corrector strengths. Further, in order to minimize
hysteresis effects, we had conveniently cycled each
steering magnet before measuring the matrix elements.
This has significantly enhanced measurement
repeatability. In Figure 2 we show surface graphics of
the difference between the measured and model
vertical matrices before and after calibration for the
complete set of parameters. After calibration for BPM
and corrector gains, the average distance between the
model and experiment became 150 mm/rad in the
horizontal plane and 400 mm/rad in the vertical plane.
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Figure 2: Difference between the experimental and
model vertical matrices before (above) and after
(below) calibration (seen in the same scale).

Inclusion of quadrupole coefficient further
decreased this distance to 60 mm/rad in the horizontal
plane and 61 mm/rad in the vertical one.

The LNLS orbit correcting system underwent an
upgrade in the end of 1998, which enabled us to check
out improvements in the gains of BPM and correctors
[5]. In fact we were able to find (via calibration of
gains) an improvement of up to 10% in BPM
calibration compared to the situation before the
upgrade. Also, before the upgrade, using solely
calibration of the gains, we could explain the large
asymmetry found in the horizontal dispersion by
deviations in the BPM calibration. As seen in Figure 3,
the calibration could fit well large values of the
dispersion function, while the small discrepancies
found in the low values are caused mainly by
quadrupole errors (not included in this fit). This figure
also show the value of a parameter (κ) which gives the
absolute calibration of BPM gains.

6  CONCLUSIONS
So far the LNLS machine study group has succeeded in
establishing a systematic optics calibration process by
using the information contained in the response matrix
of the ring. The calibration includes the fitting of BPM
and corrector gains, energy-shift corrections and
quadrupole forces in straight quadrupole and dipoles.
In this first period, we have written down the main
codes, performed some measurements and debugged

the whole processes. The chi-squared minimum value
has not been attained yet, indicating the existence of
unknown parameters (possibly hidden quadrupole
components) not yet included.

Of particular importance is the error analysis of the
response matrix. The response matrix error is
composed of two different contributions determined by
BPM and corrector noises. The influence of correctors
is strong in the low energy range (around 300 MeV)
while, at high energy, the corrector system has shown
little effect. This is important since we intend to map
quadrupole field deviations from nominal values for
the entire energy range covered by the LNLS machine
(from the injection energy, 120 MeV up to 1.37 GeV),
and the matrix error has to be dealt appropriately.
Results in this direction will be published in the future.
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Figure 3: Measured horizontal dispersion function
(crosses) and fitted (lines) obtained via BPM and
corrector gain calibrations.
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