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NONLINEAR ACCELERATOR PROBLEMS VIA WAVELETS:
3. EFFECTS OF INSERTION DEVICES ON BEAM DYNAMICS

A. FedorovaM. Zeitlin, IPME, RAS, St. Petersburg, Russi&

Abstract mental aspects of the installation of insertion devices is

e resulting reduction of dynamic aperture. Introduction

In this series of eight papers we present the applicatiorlll% . . .
of methods from wavelet analysis to polynomial approxip non-linearities leads to enhancement of the amplitude-

mations for a number of accelerator physics problems. I%epgndent' tune ;h|ft5 and d'.S‘OTt.'O” of phase space. The
onlinear fields will produce significant effects at large be-

this part, assuming a sinusoidal field variation, we consid rt litudes. Th ts of the i tion devi
the analytical treatment of the effects of insertion device ron ampiitudes. the components of the insertion device

on beam dynamics. We investigate via wavelet approailﬂagnet'c field used for the derivation of equations of mo-

a dynamical model which has polynomial nonlinearitie on are as follows:

and variable coefficients. We construct the corresponding B, = ko By sinh(k,x) sinh(k,y) cos(kz)
wavelet representation. As examples we consider wigglers Y
and undulator magnets. We consider the further modifica- B, = Bjcosh(k,x)cosh(kyy)cos(kz) 1)
tion of our variational approach which may be applied in k . .
each scale. B, = _k_yBo cosh(k,z) sinh(kyy) sin(kz),

1 INTRODUCTION with k‘g + k‘z = k2 = (27‘(//\)2, where )\ is the period

length of the insertion devicdi, is its magnetic fieldp is
This is the third part of our eight presentations in whictihe radius of the curvature in the fielt}. After a canonical
we consider applications of methods from wavelet anatransformation to change to betatron variables, the Hamil-
ysis to nonlinear accelerator physics problems. This istnian is averaged over the period of the insertion device
continuation of our results from [1]-[8], which is based onand hyperbolic functions are expanded to the fourth order
our approach to investigation of nonlinear problems — gefin = andy (or arbitrary order). Then we have the following
eral, with additional structures (Hamiltonian, symplectic oHamiltonian:
gquasicomplex), chaotic, quasiclassical, quantum, which are

considered in the framework of local (nonlinear) Fourier = 5Pz + Pyl + 12,7 [k52® + kyy’]
analysis, or wavelet analysis. Wavelet analysis is a rela-

tively novel set of mathematical methods, which gives us a + 1252, [kpx® + kyy' + 3k2K%2%y%] (2)
possibility to work with well-localized bases in functional sin(ks)

spaces and with the general type of operators (differential, -
integral, pseudodifferential) in such bases. In this part we 2kp
consider effects of insertion devices (section 2) on bealiVe have in this case also nonlinear (polynomial with de-
dynamics. In section 3 we consider generalization of owgree 3) dynamical system with variable (periodic) coeffi-
variational approach for the case of variable coefficients. Ieients. As related cases we may consider wiggler and un-
section 4 we consider more powerful variational approacdthulator magnets. We have in horizontal- s plane the
which is based on ideas of para-products and approximéllowing equations

tion for multiresolution approach, which gives us possibil- . e

ity for computations in each scale separately. o= _Sm_vBZ(S) @)

[pe (k22 + kij) — 2kzpyxy]

. . €
§ = xm—BZ(s),

2 EFFECTS OF INSERTION DEVICES
ON BEAM DYNAMICS where magnetic field has periodic dependence and hy-

Assuming a sinusoidal field variation, we may consider acD-erbOIIC onz.
cording to [9] the analytical treatment of the effects of in-
sertion devices on beam dynamics. One of the major detri- 3 VARIABLE COEFFICIENTS

*e-mail: zeitin@math.ipme.ru In the case when we have situation when our problemis de-
1 hitp:/iwww.ipme.ru/zeitlin.html; http:/mww.ipme.nw.ru/zeitlin.ntml - scribed by a system of nonlinear (polynomial)differential
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equations, we need to consider extension of our previousSo, the general scheme is the same one and we have only
approach which can take into account any type of variabne more additional linear algebraic problem by which we
coefficients (periodic, regular or singular). We can proin the same way can parameterize the solutions of corre-
duce such approach if we add in our construction additionaponding problem. As example we demonstrate on Fig. 1 a
refinement equation, which encoded all information abowimple model of (local) intersection and the corresponding
variable coefficients [10]. According to our variational ap-multiresolution representation (MRA).

proach we need to compute integrals of the form

/D by (D)™ (27 — k) (92)™ (27 — ko), (4)

where now;; (t) are arbitrary functions of time, where trial
functionsy, - satisfy a refinement equations:

= anpi(2t — k) 5)

kEZ

If we consider all computations in the class of compactly

supported wavelets then only a finite number of coefficients Figure 1: Simple insertion.
do not vanish. To approximate the non-constant coeffi-

cients, we need choose a different refinable functign

along with some local approximation scheme

e e
a€Z

where F, ;, are suitable functionals supported in a small N
neighborhood of2~‘k and then replacé;; in (4) by 4«q/\wv

Bybi;(t). In particular case one can take a characteristic
function and can thus approximate non-smooth coefficient:
locally. To guarantee sufficient accuracy of the resulting
approximation to (4) it is important to have the flexibility
of choosingps different fromp;, ¢5. In the case when D |
is some domain, we can write

bij(t) b= bi;(t)xp (2t — k), (7

0<k<2¢

Figure 2: MRA representations.

where xp is characteristic function of D. So, if we take
w4 = XD, Which is again a refinable function, then the 4 EVALUATION OF NONLINEARITIES
problem of computation of (4) is reduced to the problem of SCALE BY SCALE

calculation of integral ) - o
We consider scheme of modification of our variational ap-

H(ky, ko, ks, ky) = H(k) = proach in the case when we consider different scales sep-
, . arately. For this reason we need to compute errors of ap-
/RS a(27t — k)3 (27t — ko) x (8)  proximations. The main problems come of course from

nonlinear terms. We follow the approach from [11].

di (or da (os
(27 — k3)py® (2°t — ka)dz Let P; be projection operators on the subspakgs e

The key point is that these integrals also satisfy some soZrt:

of refinement equation: pj . L*R) =V (10)
27‘“‘H(/f)zzb2k4H(f)» p=d+dy. (9) (Pif) (@ Z<f’<p” > $ik(@)
teZ

This equation can be interpreted as the problem of con?—nde are projection operators on the subspaégs

puting an eigenvector. Thus, we reduced the problem of Q;=P;_, — P, (11)
. . . J Jj—1 J

extension of our method to the case of variable coefficients

to the same standard algebraical problem as in the prec&b, foru € L?(R) we haveu; = Pju  andu; € Vj,

ing sections. where{V;},j € Zis a multiresolution analysis df?(R)).
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It is obviously that we can represem in the following V;,_1 — Vj,_1 we need significantly fewer coefficients

form: than for mappings (20), (21). It is enough to consider only
n n coefficients
2=2) (P ; ; ; 2 (12 S
Uq ;( JU)(QJU)+;(qu)(QJU)+Un, ( ) M<k; k/7€) :2—]/2/ cp(x—k)cp(x—k')go(:v—é)dx,
h (24)

In this formula there is no interaction between differen herey
scales. We may consider each term of (12) as a bilinear ‘
mappings: Mk, k' 0) =272 My(k — €,k — 0), (25)

(z) is scale function. Also we have

M‘j/w Vi x W, — L*R) = Vi@jr>; Wy (13) where
Mo(p. ) = / o@ — D)oz — Qolz)dz  (26)

_ . ~Now as in section (3) we may derive and solve a system of
For numerical purposes we need formula (12) with a finitgnear equations to find/, (p, ¢) and obtain explicit repre-
number of scales, but when we consider limits> co we  sentation for solution.

My Wy xW; = L*(R) =V @55, Wy (14)

have We are very grateful to M. Cornacchia (SLAC), W. He-
u? =" (2Pu+ Qju)(Q;u), (15)  rrmannsfeldt (SLAC), Mrs. M. Laraneta (UCLA), J. Ko-
J€Z no (LBL) for their permanent encouragement.
which is para-product of Bony, Coifman and Meyer.
Now we need to expand (12) into the wavelet bases. To 5 REFERENCES
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