
BEAM_LINER –- AN OBJECT ORIENTED BEAM LINE MODELING
C++ CODE

I.P. Yudin# +, A.V. Trofimov, JINR, Dubna 141980, Moscow region, RUSSIA

Abstract

An integrated expert system has been developed to solve
the charge particle beam optics problems [1,2]. The optics
elements are a drift space, a bending magnet, a
quadrupole, a sextupole, an octupole, a solenoid, an
accelerating tube and some elements introduced by the
users. BEAM_LINER is coded by the C++ language and
the UNIX operation system with a graphical user-oriented
interface on the PC Pentium II.

1. Introduction.

The user-oriented interface is created allowing to solve
the beam matching problem, to compute of betatron
functions, of phase advances and to investigate other
problems. The beam motion is described on of the
HQYHORSHV��RI� �IXQFWLRQV��DQG�WKH�IUHTXHQFLHV�RI�EHWDWURQ
oscilations (what is by the ideology of the methods of the
snooping abroad of phase multitude). The motion of the
single particles of the beam (trajectories) is described on
the simple language of the transfer matrixes. But it is
possible by the numerical integration, also.

2. The description of member functions
and the class structure.

BEAM_LINER is written by means of object-oriented
design [3] in X Window system without the using of ready
libraries of control elements (such as Motif, Athena and
etc.). That is why we created some minimal set of classes
which are necessary for the building of user-oriented
interface (some buttons, the edit boxes, the message
boxes, etc). Moreover, we created the base class
(Xelement) for the representation of elements, of which
the system of beam optics itself is to be constructed.
Below we will describe four from the set of elements:
those are a drift of space, a quadrupole, a solenoid, and
dipole. For them we created four different classes -
successors of Xelement. Fact is that all classes of control
elements are successors of one abstract base class and
inherit its member functions - that allows to curtail greatly
the measures of the main loop which receives and handles
the events. The using of virtual functions lets us not to re-
write the same fragments of code for the elements of
different types.

* Work supported in part by Russian Federal Program ‘Integration’,
 contract No. K0085.

+ E-mail: yudin@cv.jinr.ru

In header-files obj1.h, obj2.h are described:
1) Abstract class Xobject
2) Class Xbut, successor of Xobject
3) Class Xbut1, successor of Xbut
4) Class Xfield, successor of Xobject
5) Abstract class Xelement.
6) Class Xdrift, successor of Xelement.
7) Class Xquadro, successor of Xelement.
8) Class Xdipol, successor of Xelement.
9) Class Xsolen, successor of Xelement.

2a. Classes of control elements:
class Xobject
 { public: Display *dis;
 Drawable win; /*main window’s descriptor*/
 GC *prGC;/*points at the structure of graphic
 context*/
 unsigned int x; unsigned int y; unsigned int dx;
 unsigned int dy; unsigned short deep; unsigned short
 cr; unsigned short col; char title [20]; char text [20];
 int f; unsigned short tp; virtual void show (); virtual
 void hide (); virtual void set_p();
 virtual void click1 (); virtual void click2 ();
 virtual void key_pressed (char, int); Xobject (Display,
 Drawable, GC, unsigned int, unsigned int, unsigned
 int, unsigned int);};

class XBut: public Xobject
 {public: unsigned short deep; unsigned short cr;
 void hide (); virtual void click1 (); void click2 ();
 void key_pressed (char, int); void show (); void
 show_pr ();
 XBut (Display, Drawable, GC, unsigned int, unsigned
 int, unsigned short, unsigned short, unsigned short,
 char, unsigned short, unsigned short);};

class XBut1: public Xbut
 {public: void click1 (); XBut1 (Display, Drawable,
 GC, unsigned int, unsigned int, unsigned short,
 unsigned short, unsigned short, char, unsigned short,
 unsigned short);};

class Xfield: public Xobject
 {public: unsigned short p; void get_symbol (char, int);
 void set_p (); void show (); void click1 ();
 void click2 (); void hide (); void key_pressed (char,
 int); Xfield (unsigned int, unsigned int, unsigned
 short, unsigned short, char, Display, Drawable, GC,
 unsigned short);};

0-7803-5573-3/99/$10.00@1999 IEEE. 2704

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

 Here dis points on the main display, win is the descriptor
of window which owns an object, prGC points at the
structure of the graphic context of window, x, y, dx, dy are
coordinates of upper left corner and the measures of an
object, accordingly. All these parameters are handed over
when the constructor is being called. Fields deep and cr
matter only for Xbut and Xbut1 classes, they define the
geometry of buttons (for example, deep defines the
thickness of buttons), as well as field f is, which indicates
if the button is pressed or not. Col value defines the color
of an object, line title contains inscription on button, or
over the edit box in case of Xfield, and text line is
appointed to store a text, inputed by user. At the window’s
creation it is being defined by masks, that only Expose,
MotionNotify, KeyPress, and ButtonPress events will be
handled in main loop. Event Expose, forcing window to
redraw itself, comes, for example, with hitting one of
buttons or with the text appearance or changing in an edit
box; certainly, all control elements will be re-drawn in
updated state. When one of three last events is being
intercepted, program looks through the array which
contains pointers at all existing control objects (the
pointers are of Xobject * type). Using of virtual functions
lets us to use this single scheme of objects’ reaction on
incoming events, though different classes may react
differently.
Virtual functions click1 (), click2 (), key_pressed (char,
int), inherited by all classes – successors of Xobject -
define, how an object should respond on clicking with the
left or right mouse key, or on events from keyboard,
accordingly. Show() and hide() functions are responsible
for showing/hiding some object when window is being
updated. Class Xfield ignores Buttonpress events, the text
box becomes active in the very moment the mouse's
cursor comes in its borders. Besides, class Xfield has
special member function get_symbol (...) for the input and
processing of information, coming to edit box. Only this
class really treats this event (classes Xbut and Xbut1 just
ignore its).

2b. Classes Xelement, Xdrift, Xquadro, Xdipol,
Xsolen:
class Xelement
 {public: Display *dis; Drawable win; Drawable win2;
 GC *prGC; unsigned short obj_type; unsigned int
 num; double lenght; unsigned int col; char name [20];
 void show (unsigned int); void OpenWin2 (unsigned
 int, unsigned int); void respond (unsigned int,
 unsigned int); Xelement (double, unsigned int,
 Display, Drawable, GC, unsigned short); virtual
 double get_e1 (); virtual double get_e2 (); virtual void
 set_e1 (double); virtual void set_e2 (double); virtual
 double get_B (); virtual void set_B (double);};

class Xdrift: public Xelement
 {public: Xdrift (double, double, unsigned int, Display,
 Drawable, GC, unsigned short); void set_e1 (double);
 void set_e2 (double); void set_B (double); double

 get_e1 (); double get_e2 ();
 double get_B ();};

 class Xquadro: public Xelement
 {public: Xdrift (double, double, unsigned int, Display,
 Drawable, GC, unsigned short);
 void set_e1 (double); void set_e2 (double); void
 set_B (double); double get_e1 (); double get_e2 ();
 double get_B (); private: double B;};

class Xdipol: public Xelement
 {public: Xdrift (double, double, unsigned int, Display,
 Drawable, GC, unsignedshort);
 void get_e1 (double); void set_e2 (double); void
 set_B (double); double get_e1 (); double get_e2 ();
 double get_B (); private: double B; double e1; double
e2;};

Class Xelement and it's successors demand particular
description. dis, win and prGC values have the same
specification, as in class Xobject. Descriptor win2 is
appointed to access to control panel, which opens with the
hitting of the right key of mouse. Panel is necessary to set
values of the parameters of elements. After all values had
been set, function respond (...) is called, which in its turn
calls function OpenWin2 (...), assigning recommendations
to the windows manager and creating window for panel,
and then launches the main loop to intercept and handle
the events. Window contains several edit boxes and a
button, which has to be hit to stop the loop, and then the
characteristic values of elements admit meanings stated in
corresponding edit boxes.
All constructors and the member functions of classes are
described in header files obj2.h, obj3.h, and obj_draw.cpp

3. The interface description.

The whole code of program is split into separately
compilable modules. Module main.cpp contains function
main, which fills objects array, creates the main program's
window and launches the main loop. Main loop acts in the
following way: in the moment when next event has been
received, an array of objects is being looked through. If
the mouse's cursor were located in the frontiers of an
object (lets call such an object "active"), then it's
corresponding response-function and then function
ResponseTable, residing in file response.cpp, are being
called. After they finished, the window is to be updated. If
the right key of mouse (rEvent. type==ButtonPress,
rEvent. xbutton. button==Button2) were pressed while
cursor were located over the special position, averted for
an element then, in case, if this position were not empty, a
respond(...) element's member function is being called. If
it was left key (rEvent. type==ButtonPress, rEvent.
xbutton. button==Button1), while cursor where over one
of the positions, then an element defined by significance
obj_flag (this significance changes by hitting one of the
buttons - Drift, Quadro, Solenoid, Dipol) is being placed
in the position. All values, characterizing element, are

2705

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

assigned to equal zero by the default and may be changed
later in the function respond(...), or an element maybe
destroyed. By the hitting of button SAVE created
configuration will be stored in file with the name, given in
edit box filename. Previously saved configuration maybe
downloaded later again by the hitting of LOAD button (all
corresponding functions are described in file
load_save.cpp). File is just a sequence of records, which
contain the type of element and it’s values. While loading,
they are being read one after one, and elements are being
placed in corresponding positions. Finally, Quit button
brings to exit from program without saving of current
configuration.

Buttons Drift, Quadro, Solenoid and Dipol serve to select
the elements, button NEW destroyes the configuration and
cancels all settings. Algorithm, calculating the trajectory
itself, starts working with the hitting of Go button.

rec_col.cpp module also contains receive_colors(...)
function, which defines colors. One of the first actions,
performed by function main after standard procedures -
the setting connection with graphic server, the definition
of the number of main screen, and so on - is
receive_colors()’s call; as a result, global variables which
contain color values are defined. Uconv.cpp contains
several accessorial functions, usefull for the conversion of
type char in double, and etc.

Fig.1. The base modules of the program.

Drawing itself is performed by function Draw which uses,
in its turn, special graphic library PlPlot [4].
All global variable, constants and the prototypes of
functions are described in header files init.h, init2.h.

More discriptions are avaible in [5].

4. References
[1] Andreev V. V., Yudin I. P. Third-Order Optics of the Real Solenoid
Lens. In Proc. International Conference on HEACC’92. Humburg,
Germany, July 15-18, 1992.
[2] Brown K.L., et al. TRANSPORT. A Computer Program for
Designed Charged Particle Beam Transport System. SLAC-91, Rev. 2
UC-28 (1/A). May 1991.
[3] Grady Booch. Object Oriented Design. With Application. The

Behjamin/Cummings Publishing Company, Inc. New York, 1991.
[4] PlPlot User Guide.
ftp dino.ph.utexas.com
[5] I.P.Yudin, A.V. Trofimov BEAM_LINER User Guide, JINR,
Dubna, March 3, 1999.

GoDraw

OpenWin32

respond save

main

Respond Table

load

Fig.2. Example of control menu.

2706

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

