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Abstract

The direct space charge detuning at the centre of a nominal
LHC proton bunch is about 10−3 at injection energy. Ow-
ing to their slow synchrotron motion, particles with small
betatron amplitudes sample a varying electric charge den-
sity within the bunch and thus experience a tune modula-
tion at twice the 66 Hz synchrotron frequency. In conjunc-
tion with magnet nonlinearities, such tune modulation may
give rise to particle diffusion to large betatron amplitudes
and eventually to particle loss. Coherent quadrupole oscil-
lations, caused,e.g., by injection mismatch, resonantly per-
turb the single-particle motion via the space-charge force,
and can cause a rapid growth in the transverse amplitude.
Using the results of numerical and analytical investigations,
we show that these space-charge effects alone will not af-
fect the LHC performance.

1 INTRODUCTION

With an injection energy of 450 GeV, space charge ef-
fects at the LHC would appear to be negligible. However,
there are two mechanisms by which the direct space charge
force could cause a modulation of the betatron tunes, and,
thereby, degrade the dynamic aperture or generate large-
amplitude beam tails: First, synchrotron oscillation in con-
junction with the longitudinal bunch profile induces a tune
modulation at twice the synchrotron frequency, with a
modulation amplitude comparable to the space-charge tune
shift. Second, if the beam is injected with a betatron mis-
match, the oscillation of the beam size, prior to filamen-
tation, will also result in a tune modulation, at twice the
betatron frequency.

2 SPACE CHARGE FORCE

Considering an optical lattice with vertical normalized
quadrupole gradientKy(s), the equation of vertical mo-
tion for a single particle can be written asy′′ = −Kyy +
Fsc,y(x, y), where a prime denotes the derivative with re-
spect to the longitudinal positions, x is the horizontal coor-
dinate, andFsc,y the vertical space charge force. In linear
approximation (fory � σy, x � σx, whereσy andσx are
the transverse rms beam sizes), this force is

Fsc,y(x, y) ≈ 2Fdistrpλ(z)
γ3σy(σx + σy)

y (1)

The functionλ(z) = Nb exp(−z2/(2σ2
z))/(

√
2πσz) de-

notes the longitudinal distribution assumed to be Gaussian,
Nb the bunch population, andγ the Lorentz factor. The fac-
tor Fdist depends on the transverse distribution:Fdist = 1
for a Gaussian, 1/2 for a KV (uniform) distribution [1], and

Table 1: LHC injection parameters [3].

parameter symbol value
circumference C 26.7 km
beam energy Eb 450 GeV
particles per bunch Nb 1011

normalized transv. emittance εN 3.75µm
rms bunch length σz 13 cm
average beta function β 90 m
rms energy spread δrms 4.7 × 10−4

synchrotron tune Qs 0.006

2/3 for a parabolic distribution [2]. The space-charge tune
shift at the bunch center (z = 0) is

∆Qy ≈ CrpFdistNb

4πγ2εN

√
2πσz

(2)

whereβ designates the average vertical beta function, and
εN the transverse normalized emittance. Using LHC pa-
rameters (Table 1), we find∆Qy ≈ 1.1 × 10−3 Fdist.

At larger amplitudes, the space-charge force is nonlinear.
For a flat Gaussian distribution this force can be calculated
in terms of the complex error function [4]. Expressions for
the parabolic and for the uniform distribution can be found
in Ref. [5]. Via λ(z) the space charge force, Eq. (1), de-
pends on the coordinatez. Therefore, a particle performing
large synchrotron oscillations and small transverse oscilla-
tions will experience a modulation of its betatron tune of
amplitude∆Qy, due to the harmonic variation inz. A tune
modulation of comparable magnitude will also occur in the
horizontal plane.

3 SYNCHROTRON OSCILLATIONS

The effect of the tune modulation due to space-charge force
and synchrotron oscillations, was studied by particle track-
ing with MAD [6], for the same LHC model as described
in [8]. In the simulation, we launched twin particles at dif-
ferent transverse initial amplitudes. From their separation
as a function of time we computed the Lyapunov exponent,
which is a measure of potential instability. The longitudinal
amplitude was chosen as1.6σδ (equal toδ = 7.5 × 10−4,
or three quarters of the rf bucket half size). The space
charge force was modeled as a tune modulation of ampli-
tude up to∆Qy at twice the synchrotron frequency, which
was generated by harmonically varying the strength of the
two main quadrupole families. In general, tune modulation
is known to increase the chaotic (unstable) region of phase
space [7]. However, comparing the Lyapunov exponents
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obtained with and without the additional tune modulation
reveals no significant effect for these parameters (see Fig.
1). The observed weak effect is consistent with the results
of chromaticity scans [8], and may be attributed to the ab-
sence of simultaneous modulation at other frequencies.

Figure 1: Lyapunov exponent computed by tracking over
5 × 104 turns as a function of the initial betatron ampli-
tude, comparing cases with and without an additional tune
modulation that represents the effect of space charge and
synchrotron oscillations.

4 QUADRUPOLE OSCILLATIONS

The equation governing the evolution of the second mo-
mentσy =

√
< y2 > (the angular brackets denote an av-

erage over the beam distribution) follows from the single-
particle equation of motion [9]:

σ′′
y + Kyσy − ε2y,rms

σ3
y

=
2Fdistrpλ(z)
γ3(σx + σy)

(3)

The term on the right hand side is due to the space charge,
and we have only taken into account the linear component
of the space-charge force. Consider a beam injected with a
vertical (betatron) mismatch of amplitude∆σy(0) ats = 0.
The total beam size is the sum of the unperturbed (matched)
valueσy0 and the perturbation:σy = σy0 + ∆σy. The
equation of motion for the perturbed beam size is obtained
by linear expansion aroundσy0:

∆σ′′
y +

(
Ky + 3

ε2y,rms

σ4
y0

+
2Fdistrpλ(z)
γ3(σx + σy0)2

)
∆σy = 0

(4)
For simplicity, we now assume a smooth focusing, replac-
ing Ky by 1/β2. Also using the relationσ2

y0/β = εy,rms,
which holds for a matched beam, and neglecting the space-
charge induced tune shift, we find the approximate solution
∆σy(s) ≈ ∆σy(0) cos 2s/β. Next, we can insert the ana-
lytical solution for the oscillation of the beam rms size into
the equation of motion for a single particle above, replace
σy by σy0 + ∆σy(s), and introduce the new ‘time’ unit
u = s/β. We assume that the beam is perfectly matched in
the other (horizontal) plane, that the variation∆σy is small
compared with the matched beam size, and, for simplicity

also thatσy0 ≈ σx0 (which we callσ0). Neglecting the
shift in betatron tune, we finally obtain

d2y

du2
= (−1 − D cos 2u) y (5)

where

D ≡ 3
2

Fdistrpβ
2λ(z)

γ3σ2
0

∆σy(0)
σ0

(6)

For LHC parameters and a Gaussian distribution:D ≈
5×10−5 ∆σy(0)/σy0. Equation (5) is Mathieu’s equation.
With Q denoting the total betatron tune, the tune modu-
lation amplitude corresponding toD is ∆Q ≈ 1

2DQ ≈
0.0015 ∆σy(0)/σy0. The solution of the Mathieu equation
is of the Floquet type:Fν(u) = eiuνP (u), whereP (u)
is a periodic function of periodπ. For our parameters,ν
has an imaginary component, and one solution is exponen-
tially growing (the other shrinking). The exponentν can
be determined numerically (see [12]). With 20% accuracy
we find thateiπν ≈ 1 + D over a wide range of parameter
values (e.g., for D between10−5 and10−1). The growth
per turn is(1 + D)2Q ≈ (1 + 2DQ), and the exponen-
tial growth timeτ ≈ C/(c[ln(1 + 2DQ)]) ≈ C/(2cDQ),
with C the circumference, andc the speed of light. This
relation is illustrated in Fig. 2, for the LHC parameters
2DQ ≈ 0.006∆σy(0)/σy0 (usingQ ≈ 63). With an ini-
tial mismatch of 50%, the exponential growth time is of the
order of 40 ms, while for 25% mismatch it is 60 ms.

Figure 2: Exponential growth time as a function of the mis-
match∆σy(0)/σy0. For the LHC 10 ms is about 100 turns.

Emittance growth and the generation of beam halo in
proton linacs [10] and synchrotrons [11] has been stud-
ied by computing the trajectories of test particles inside
and outside of a beam core whose dynamics is calculated
independently. Following the same recipe, we numeri-
cally solved the single-particle equation of motion, using
either the linear force of Eq. (1), or the full nonlinear
force. The rms beam sizesσy , σx were modulated accord-
ing to σx ≈ σy ≈ σy0 + ∆σy(0) cos 2s/β. When the
space charge kick for individual particles was calculated,
we subtracted the linear force obtained forσy = σy0, since
this would lead to the same tune shift for both the core
and the individual test particles. Several hundred particles
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were uniformly distributed up to±2σ with random beta-
tron phase. With the linear force of Eq. (1) the simulation
yields a mean-amplitude growth rate of aboutτ ≈ 35 ms
for ∆σy(0)/σy0 = 50%, consistent with our analytical es-
timate. For the nonlinear force, the simulated growth rate
is about 4 times slower (140 ms). The maximum ampli-
tude over all test particles shows an oscillation whose phase
is π/2 behind the core oscillation (each at twice the beta-
tron frequency). Thus, the particle-core simulation is not
self-consistent, since, in reality, the quadrupole oscillation
would be affected by the growth of the individual particle
amplitudes.

More realistic simulations can be performed with the
program MAD, which was modified so that, at each lattice
element, it applies a horizontal and vertical space-charge
kick. The space-charge kick is calculated from the trans-
verse rms spot size of a group of tracked macroparticles
representing the beam. In Fig. 3 we depict typical results,
that were obtained for a bunch population ofNb = 1012,
10 times the nominal, and a linear space-charge force. The
MAD simulation shows growing or shrinking betatron am-
plitudes depending on the phase of the betatron oscillation
with respect to the mismatch. The growth stops, once the
quadrupole oscillation has vanished.

Without systematic octupole field components, the
quadrupole oscillation is damped mainly by filamentation
due to the space-charge tune spread. Only considering the
variation of the space-charge tune shift with longitudinal
position, the time constant for this filamentation is

τsc ≈ 1

2π
√

2
√

1√
3
− 1

2 ∆Qy

≈ 1
2.5 ∆Qy

(7)

In our example, it evaluates to 36 turns, in good agreement
with the simulation. Interestingly, since both damping
and growth rates are proportional to the charge per bunch,
the final emittance growth resulting from the space-charge
force is independent of the bunch charge. For smaller
bunch charges other filamentation mechanisms,e.g., due to
nonlinear magnetic fields, become effective, leading to an
enhanced damping of the quadrupole oscillation (Fig. 4).

5 CONCLUSION

Tune modulation due to direct space-charge force along
with synchrotron oscillations does not significantly in-
crease the chaotic region in phase space. While a
quadrupole-mode oscillation may cause fast amplitude
growth rates, in practice this oscillation vanishes rapidly
via filamentation due to space-charge induced tune spread
and due to magnet nonlinearities. Thus, it is unlikely to
result in serious emittance growth, for the LHC.
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