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Abstract

Ray-tracing codes determine self-consistent electric
fields in high-current electron devices by an iterative
procedure of orbit tracking and space-charge deposition
with field recalculation. Methods to find beam-generated
magnetic fields for relativistic beams are less
standardized. Existing approaches (like ray counting or
the relativistic transverse force approximation) have
limited accuracy and do not include effects of current
flow in source and collector electrodes. We describe a
new method for two-dimensional finite-element codes
where the beam current is deposited on the faces of the
conformal elements of the electrostatic mesh. The
resulting balanced calculations of electric and magnetic
forces are resistant to numerical filamentation
instabilities. With simple rules it is possible to assign
boundary currents even in complex structures.

1 CURRENT ASSIGNMENT TO
ELEMENT FACES

Figure 1 shows the conformal mesh used in the ETrak
code to represent a high-current electron gun. The
solution volume is divided into a number of small
volumes (orelements) with triangular cross-section. In
low-energy devices, the beam behavior is dominated by
electric fields. In this case, the following procedure is
used to find particle orbits consistent with applied and
space-charge electric fields [1].

• Start with a vacuum solution for electrostatic
potential at vertices.

• Initiate several model electrons near an emission
surface, each carrying a portion of the beam
current Ii. The model particles can be specified or
determined by the code from a local application of
the Child law.

• Integrate the orbit of each particle using a time
step∆t, depositing charge Ii∆t in each element that
the particle crosses.
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• Recalculate the fields including the electron space
charge.

• Repeat the orbit and field calculations until the
solution converges.

Some ray-tracing codes use finite-difference methods on
a regular mesh [2,3,4] and others employ finite-element
methods [5,6]. The advantage of the finite-element
approach with conformal mesh is apparent is Fig. 1.
Accurate field calculations are possible on curved
surfaces and every part of the solution volume has a
unique material identity. In ETrak elements are divided
into regions that share common characteristics. For
example the tan elements in Fig. 1 are part of the
cathode electrode, grey elements comprise the anode,
and white elements represent vacuum. For particle
tracking element properties are divided into three types:
vacuum, material and secondary material. Electrons
propagate through vacuum materials and stop when they
enter a material element. Secondary elements are
discussed in Ref. [7].

Figure 1: Schematic view of a conformal mesh for a ray-
tracing solution. The colored elements represent material
regions. The red line is a model electron trajectory. The
marked segments represent the particle orbit vector over
a single time step for short and long values of∆t.
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Next consider assignment of electron current on the
conformal mesh to calculate beam-generated magnetic
fields. To satisfy current conservation, the current must
be associated with element faces rather than volumes.
Electrostatic field interpolations during tracking already
provide information on the elements occupied by
electrons at times t and t+∆t. Figure 1 shows two
incremental orbit vectors for short and long values of∆t.
In the first case, the electron crosses to an adjacent
element. Here the current +Ii is assigned to the common
face if the particle moves in the positive z-direction,
while the value –Ii is assigned if the particle moves
backward. When ETrak detects that an electron has
crossed several elements in a step, the code makes a
local search of faces near the average position and
assigns±Ii to any that intersect the increment particle
vector. Face current is always assigned before
terminating an electron orbit that enters a material
element. This convention ensures correct current
assignment to collector surfaces. After tracking all model
electrons the process yields a complete set of face
currents that satisfy the condition that the divergence ofj
is zero.

2 ENCLOSED CURRENT AND
TOROIDAL MAGNETIC FIELD

After all orbits are tracked, the face current information
is used to find values ofenclosed currentand Bθ, both
vertex quantities. The enclosed current is the total beam
current that passes between the point and the axis. It is
relatively easy to find enclosed current in the structured
mesh of ETrak. Following Fig. 1, vertices are labeled in
the horizontal direction (z) with the indexk and in the
vertical direction (r) with index l. The procedure for
standard vacuum points is first to set the enclosed current
equal to zero along the rowl=1 . Next the code works
outward toward increasingl, processing all vertices in a
logical row. ETrak uses a mesh where all standard
vertices are surrounded by six elements and connected to
six vertices along six faces. Figure 2 shows the face
and vertex numbering conventions around Vertex0.
Faces4 and5 connect to vertices with smaller values of
l, 3 and 6 to vertices on the same tow, and1 and 2 to
higherl.

At each point, the code checks connections to points4
and 5 on row l-1. These points should already have
values of enclosed current, I4 and I5. The enclosed current
at the point is given by

Figure : Relative face and vertex numbers at Point0.

The equation involves vertex coordinates z4, z5 and z0 and
connecting face currents∆I4 and ∆I5. Weighting in the
formula gives preference to current on vertical faces.

Field averaging between iteration cycles is essential
for the stability of the ray-tracing technique. Consider,
for example, space-charge assignment for Child law
emission. On one cycle, a strong electric field near the
cathode would lead to large particle currents. The high
space charge would suppress the local field on the next
cycle. The solution is to average the newly-calculated
space-charge with values from previous cycles. In ETrak
the same averaging algorithm is used for beam-generated
magnetic field to preserve the balance of forces.

In the equation, the quantityζ is a number less than
unity.

3. BOUNDARY CONDITIONS
For valid interpolations of Bθ over the solution volume,
material vertices adjacent to vacuum must have correct
values of enclosed current. There are two classes of
boundary vertices:
• Emission points. These should include the current

of the emitted beam even though the electrons do
not cross the associated faces.

• Collector vertices. Particles pass through some of
the connected faces when stopping in a material.
The enclosed current must reflect the incident beam
current over all enclosed faces.

Regarding the emission surface, the challenge is to
define a method that works for all cathode shapes and
arbitrary distributions of electrons. In ETrak an emission
surface is a special set of vertices marked as a line region
during mesh generation. The program analyzes the mesh,
making a list of all faces on the emission surface and
confirming that they are adjacent to vacuum. The set of
nearby initial electrons is either specified by the user or
generated by the code using a space-charge algorithm. In
either case the code processes the list of electrons,
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associating each particle with the closest emission face.
The present particle currents are assigned to the faces at
the beginning of each iteration cycle. To account for
concave spherical cathodes and other reentrant
structures, the assigned current is always positive,
regardless of the emission direction.

The next task is to assign face currents to general
material boundaries. For the enclosed current calculation
all material regions are treated as perfect conductors.
The following procedure is used to process boundary
vertices.
• Make a list of all vertices adjacent to material

regions and connected to at least one vacuum
element.

• Track electron orbits and assign face currents.
• Carry out the enclosed current calculation described

in the previous section. Handle boundary points the
same as standard points if they have one or more
downward connections.

• If a boundary point has no downward connection to
a processed vertex, use the following rule. Check
Points 3 and 6. If one of the points has been
processed, the enclosed current at Point0 equals the
enclosed current of the neighbor plus the face
current of Side6 or 3.

• If there are no sideways connections, check upward
connections to Vertices1 and 2. In this case, the
enclosed current equals the enclosed current of the
upper pointminusthe face current of Side1 or 2.

In most situations, the rule propagates the enclosed
current over the boundary correctly, even for highly
reentrant collector structures.

4 BENCHMARK CALCULATIONS
ETrak was applied to a variety of high-voltage gun
designs previous treated with Trak 4.0[8]. The code
showed good agreement and smooth beam distributions
without use of the relativistic force approximation. The
solution of Figure 3 demonstrates the accuracy of the
technique. The test addresses free expansion of a
uniform current-density, 1 MeV, 617.4 A electron beam
with an initial radius of 1.0 cm. The plot shows
computed orbits of 20 model electrons and contours of

constant Bθ. Here the transverse forces are created solely
by the beam. The electric and magnetic forces balance to
within 1/γ 2 = 0.114. In the absence of the downstream
collector the code predicts an envelope expansion over
the 50 cm solution length within 0.3 per cent of the
analytic prediction [9]. Figure 3 shows a solution with
the addition of a grounded collector with spherical tip
(note that there is a5X vertical exaggeration in the plot).
The entrance surface is defined as an emission plane and
is treated as a Neumann boundary for the electric field
calculation. The parallel magnetic field contours show
the effectiveness of the emission surface current
assignment. The beam follows the free expansion curve
until it reaches the vicinity of the collector. The rod
partially cancels the beam electric field allowing the
magnetic forces to predominate. In this way, the small-
diameter rod collects the full beam current. Note that this
effect depends critically on the correct spatial variation
of enclosed current over the outer surface of the
collector. The parallel magnetic contours outside the
beam confirm that the method conserves current.
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Figure 3: Relativistic beam impinging on a grounded
collector. Dimensions in cm.

2739

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999


