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Abstract

We introduce in this paper two numerical methods, a
Darwin model field solver and a semi-Lagrangian Vlasov
solver, which may be appealing for beam simulations and
discuss their properties.

1 THE DARWIN MODEL FIELD
SOLVER

1.1 Introduction

The Darwin Particle-In-Cell formulation was introduced by
Nielson and Lewis in 1976 [1]. This model, as described in
detail in the next section, eliminates only the propagating
light waves from the system, while retaining other slower
time scale electromagnetic effects arising from the particle
current sources. It has proved to be a mixed blessing over
the years. Many authors have used the technique to great
advantage, but have noted the difficulties sometimes en-
countered in its implementation [1], [2]. These problems
arise from modifications of the originally hyperbolic sys-
tem of equations which make the resulting system elliptic.
Thus boundary conditions must be carefully formulated in
order to ensure the problem is well-posed. Some of the
most violent numerical instabilities experienced in plasma
computations are associated with naive implementations of
the Darwin method. However, certain beam simulations,
which involve much less dense plasma might be spared
these instabilities, and this could make the Darwin model
very appealing in such cases.

1.2 The Darwin model

The Darwin approximation of Maxwell's equations is in-
troduced to remove what is often the stiffest time scale in
electromagnetic simulations, namely the propagation time
of light waves from zone to zone. This model eliminates
electromagnetic waves, but keeps other important parts of
the physics, in particular the low frequency phenomena.

The electric fieldE is decomposed into two parts, a lon-
gitudinal partEL which is curl free and a transverse part
ET which is divergence free:

E = EL + ET
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where∇ × EL = 0 and∇ · ET = 0. Furthermore, as
∇ × EL = 0 we can writeEL = −∇φ. Darwin's ap-
proximation consists in dropping the transverse part of the
displacement current from Ampere's law:

∇×B = µ0J +
1
c2

∂EL

∂t
,

and keeping the other three Maxwell's equations un-
changed.

1.3 Asymptotic derivation from Maxwell's
equations

Let us assume that the time derivatives are small in Max-
well's equation. To emphasize this we write the dimension-
less Maxwell's equation introducing the small parameterε:

−ε
∂E
∂t

+∇×B = J,

ε
∂B
∂t

+ ∇× E = 0,

∇ · E = ρ,

∇ ·B = 0.

We express the fieldsE andB such that

E = E0 + εE1 + ε2E2 + . . .

B = B0 + εB1 + ε2B2 + . . .

Plugging them into Maxwell's equations, we get by gath-
ering the terms in the same power inε:
The first order terms:

∇× B0 = J0, ∇ · B0 = 0,

∇×E0 = 0, ∇ · E0 = ρ0.

The second order terms:

∇×B1 = J1 +
∂E0

∂t
, ∇ · B1 = 0

∇×E1 = −∂B0

∂t
, ∇ · E1 = ρ1.

Notice that∇×E0 = 0 such that∂E0

∂t which appears in the
second order terms only involves only the longitudinal dis-
placement current. Therefore the following system yields
the same terms in the expansions:
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– An equation for the scalar potentialφ where
EL = −∇φ

−∇2φ = ρ,

– A system for the magnetic field B

∇×∇×B = ∇× J,

∇ · B = 0.

• A second order approximate model (E1 andB1 are
also identical to those in Maxwell's equations), is ob-
tained if we include the transverse electric field

∇×∇× ET = −∂∇×B
∂t

,

∇ · ET = 0.

This derivation has been performed in more detail and in a
mathematically rigorous manner in [3].

Instead of Maxwell's equations, which are hyperbolic,
we now have three elliptic equations. Thus the Courant
condition on stability no longer constrains the timestep.

1.4 The time differencing instability

In Nielson and Lewis [1] and Sonnendr¨ucker, Ambrosiano
and Brandon [4], it is shown that there is a stability condi-
tion for the numerical time differencing of the source term
for ET . This reads

ωp
2

c2k2
≤ 1.

The smallestk seen by a mesh isπ/L, whereL is the
length of the computational domain. Practically speaking,
this means that ifc/ωp ≥ L/π the simulation should be
stable. Therefore the straightforward time-differencing can
be used only for problems of length at most of the order of
the collisionless skindepth. This condition is not fulfilled
in most plasma problems where the Darwin model might
be interesting (see [4] for a discussion). There is a remedy
to this instability, but it involves gathering more moments
from the particles and solving the following problem in di-
mensionless units

ρET +∇×∇× ET = −
∫

Ω

v(v.∇xf) dv + ρEL

+J × B,

∇ · ET = 0

which is numerically costly as the right-hand-side of the
first equation is not divergence free.

However certain beam simulations which involve much
lower ωp should be in the stable regime and hence make
the Darwin model numerically a lot less costly. We are
studying the possibilities.

SOLVER

2.1 Introduction

Up to now space charge dominated beam simulations have
been performed most of the time using Particle-In-Cell
(PIC) methods such as those in WARP [5], which afford
satisfying results with relatively few particles. However, it
may be useful to have an alternative numerical approach
in order to be able to separate more easily numerical and
physical features in the simulation results. Therefore, we
have adapted the semi-Lagrangian Vlasov method [6] to
2D slice beam simulations.

2.2 The semi-Lagrangian scheme for 2D advec-
tion

The semi-Lagrangian method consists of looking for the
value of the solutionf at a set of mesh points by walking
down the characteristics backward in time. The character-
istics are the solutions of the differential system

dX

dt
= vDx(x, y, t),

dY

dt
= vDy(x, y, t).

They are such thatddtf(X(t), Y (t), t) = 0, i.e. f is con-
stant along the characteristics.

The functionf being known at the mesh points at the
previous time steps, this property can be used to compute
its new value. More precisely for a mesh point(xi, yj), we
have

f(xi, yj, tn + ∆t) = f(X(tn −∆t; xi, yj, tn + ∆t),
Y (tn − ∆t; xi, yj , tn + ∆t), tn − ∆t),

where we denote by(X(t; x, y, s), Y (t; x, y, s)) the value
at timet of the solution whose value is(x, y) at time s.

Hence the algorithm can be decomposed in two steps: 1)
Look for the starting point of the characteristic for each
mesh point. 2) Computef at the starting points of the
characteristics. This interpolation is realised using a tensor
product of cubic B-splines.

2.3 The electrostatic case

In the case where the Vlasov equation is coupled to a Pois-
son equation and submitted to a given external electric
field, it can be split into two 2D advections, with a uniform
advection field.

∂f

∂t
+ v · ∇xf = 0 and

∂f

∂t
+ E(x, t) · ∇vf = 0.

The “feet” of the characteristics are known explicitly. The
displacement from the mesh points is the same everywhere,
namelyv∆t (or E∆t). The only numerical work in this
case is to interpolate the distribution function at the previ-
ous time step using cubic splines.

In the case of hard-edged quadrupoles a residence cor-
rection needs to be applied to get the correct force. This
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enters or leaves a quadrupole during a time step the applied
field needs to be multiplied by the fraction of the time spent
in the quadrupole. More precisely, ifEapp is the quadru-
pole field and∆t1 is the time span spent in the quadrupole,
then the applied field for this time step needs to be

∆t1
∆t

Eapp.

2.4 Parallelization methodology

Solving a four dimensional Vlasov equation is obviously
very costly in time and memory. Therefore it requires
massively parallel computing facilities.

The most computationally intensive parts of the al-
gorithm are the tridiagonal solves linked to the spline in-
terpolation. These cannot be parallelized individualy with
good scalability. For this reason we chose 1D band decom-
positions of the domain. We use a decomposition in bands
parallel to thex-axis for the x-advection and a decomposi-
tion in bands parallel tovx-axis for the v-advection.

2.5 Performance

We tabulate below the performance obtained on the
NERSC T3E computer “mcurie” with644 = 1.68 × 107

grid points, 1 lattice period, and 30 time steps.

PEs time (s) speed up time/step/grid point (ns)
4 326.36 1 648.22
8 167.26 1.95 332.31
16 88.28 3.70 175.39
32 49.32 6.62 97.99

2.6 Propagation of a matched beam in a FODO
channel

We compare the emittance evolution over 35 lattice periods
of a matched beam. Figure 1 gives the WARP result and
Figure 2 gives the SLV result for a1284 grid.

The results look quite comparable over this lapse of time.
However, numerical dissipation is a serious problem in the
semi-Lagrangian algorithm. In order for it to be kept small
over a longer period of time the beam needs to be covered
by a sufficient number of grid points. This implies the use
of a very fine grid due to the beam oscillations in a FODO
channel if a regular grid is to be used. More advanced
methods, including adaptive grids, may prove useful in this
regard.
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Figure 1: rms emittance from WARP calculation
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Figure 2: rms emittance from SLV calculation
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