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Abstract

A technique for computing the longitudinal electric fields
of a bunched beam propagating inside a conducting pipe is
presented. A beam bunch is represented as a series of
discs or slices, and the total electrical field is found by
superposition of the fields of individual slices. The results
of this technique agree well with other independent
algorithms. The primary motivation for developing this
technique is to provide efficient space charge calculations
for beam dynamics simulation. However, the formalism
may be employed in other applications to find electric
fields for various beam density distributions in the
presence of conducting boundaries.

1   INTRODUCTION
Simulations that include the effects of space charge
provide a crucial basis for the design of high-current
accelerator systems. In some cases, particularly for
unbunched beams, two-dimensional (2-D) beam
simulation particle-in-cell (PIC) codes are sufficient.
However, for the case of bunched beams, the longitudinal
effects can become important, and 3-D or nearly 3-D
simulations are required.

The general 3-D PIC methods provide completely self-
consistent models, but frequently require very long
computational times.  As a result, the exploration of
possible design space can, as a practical matter, be
limited. An alternative approach is the modification of a
2-D PIC formulation to include important aspects of the
longitudinal dynamics that will provide a nearly complete
physics model and a computational speed that
dramatically exceeds the general 3-D approach. A simple
linear model of the longitudinal electrical field,
corresponding to parabolic line charge density, is valid for
ellipsoid-like beams in free space. However, in the
presence of a conducting beam chamber with dimensions
comparable to the transverse beam size, the longitudinal
electric field becomes non-linear due to image charges.
The non-linearity is especially apparent for the case of
long or longitudinally asymmetric bunches. This paper
describes a fast and accurate computational approach for
the calculation of the longitudinal electrical field of beams
with a relatively arbitrary charge density distribution
within a conducting boundary. We believe the proposed

method provides a unique strategy for the inclusion of
longitudinal dynamics in simulation codes.

2 THE PROBLEM TO BE SOLVED
A common analytical approach to calculate the space
charge electric fields of a beam propagating inside a
conducting chamber is to find the solution of the Poisson
equation. For rectangular or free space regions, the space
charge potential may be found via the convolution integral
in a rather simple and fast way [1]. However, with the
inclusion of a conducting cylindrical surface, the Green’s
function, satisfying the zero boundary conditions, is
expanded via modified Bessel functions. Simple analytical
evaluation in this case is possible only after simplifying
assumptions [2]. Even for such a simple situation as an
ellipsoidal bunch in a cylindrical pipe, numerical methods
are required to find the fields.  Poisson Solvers using
Cartesian or cylindrical grids [3] employing the FFT
technique are now in common use in PIC codes. The
approach described below is related to a Green’s function
formalism based on the charge density method [4]

appropriate for PIC simulation.

Charge Density Method

For free space, the potential u, produced by the charge
density r within the volume V is equal to
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the Green’s function. When V represents a symmetrical
bunch, the potential may be rewritten as:
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 where for the particular case of an ellipsoid-like bunch
2)/(1),( bb ZzRzR −=ϕ  (with Rb and Zb the bunch radius

and half-length correspondingly). If the charge density is
given, then equation (1) determines the corresponding
potential u. Conversely, if the potential u is known, then
the corresponding r may be found from an integral
equation (1). The formalism known as the moment
method described below is from [5]. A similar technique
called the charge density method [6] is commonly used in
electron and ion optics.
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3 SLICE FORMALISM

The original charge density method is too slow to be used
repeatedly during step-by-step PIC simulation. We have
developed a modification of the charge density method,
which assumes a discrete representation of the bunch via
charged discs or slices (see Figure 1).  The total beam
field is determined by superposition of individual fields.
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Figure 1.  A uniformly populated ellipsoidal beam bunch
modeled as 100 discrete slices. The bunch radius is
Rb=0.01 m and the half bunch length is Zb =0.1 m.

For a single slice of radius Rslice and charge density sslice(r)
the potential in the free space can be expressed:
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(The integration over z is not required for the
infinitesimally thin slice).  If the point (x0 ,y0 ,z0) is on the
cylindrical surface, then x0

2 +y0
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2
 and u(x0 ,y0 ,z0)

defines the potential due to a single slice on the cylindrical
surface at longitudinal position z0 . The same potential
evaluated at the position of that boundary (r ≡ Rcyl) with
opposite sign, is used to find the unknown surface image
charge density simage  on the cylinder from a single slice:
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with z0∈[-ZL ,+ZL ] (ZL=4Zb was found empirically).
Reapplication of (3) for x0
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automatically satisfy the zero boundary conditions. The
longitudinal on-axis potentials (r=0)  for the middle slice
are given in Figure 2.

When this procedure is applied in a PIC code, it is
proposed that the potentials and electrical field values be
calculated once for different slices and stored. During the
simulation, these values with interpolation would be used
to provide an accurate model of the longitudinal dynamics
without the penalty of long computational time [4].

Figure 2. The free space (solid curve), image charge
(dotted) and total (dashed) potential for a single slice.

4 APPLICATIONS OF THE SLICE
TECHNIQUE

In the numerical examples below, we consider a specific
case of an elliptical bunch inside a conducting cylindrical
pipe of radius 0.02 m as shown in Figure 1.  The half
bunch length, is Zb =10 cm, the maximum transverse
radius is Rb =1 cm, and the total charge is Qtotal=10-11 C.
The transverse dimensions of the beam were assumed
circular with a uniform radial charge distribution.  The
longitudinal dimension was assumed parabolic thus
resulting in a parabolic line charge density λ(z). In this
example, the bunch was modeled as 100 individual slices.

For the full bunch in the absence of the conducting
chamber, superposition of potentials for all slices results
in parabolic potential and linear field. With the inclusion
of a conducting cylinder, the total field (by superposition)
is given in Figure 3. Note that, for this case, the Ez(z)
within the bunch is strongly non-linear. The potential and
fields, calculated for Zb /Rb =10, 5, 1 are in very good
agreement [4] with reference [7] page 407.

Figure 3. The longitudinal electric field Ez(z) [V/m] along
the beam axis, for the case of a bunch with m and the half
bunch length is Zb / Rb =10.

More complicated situations, such as when the bunch has
a non-symmetrical form in the longitudinal direction, can
also be accommodated by the algorithm.  Shown in Figure
4, is a possible asymmetrical bunch within a 4 cm
diameter conducting pipe again modeled as 100 individual
slices with the calculated Ez(z)  given in Figure 5. Though
the geometrical shape of the bunch of Figure 4 is not
dramatically different from that of Figure 1, the electric
potential and field have significantly different profiles.
The Ez(z) is more non-linear, than that of Figure 3,
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changing sign four times.  In this case, the g-factor
method [7] would lead to the wrong result.
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Figure 4. Asymmetrical bunch.

Figure 5. Longitudinal field Ez(z) [V/m] found by slice
superposition for the asymmetrical bunch of Figure 4.

Off-axis Electrical Field

So far we have computed only on-axis field Ez(z) - at zero
radial position. Shown in Figure 6 are the potentials and
fields for different radial positions. From Figure 6 (all
dimensions are the same as those of Figure 1), the
approximation of simply using the on-axis value for Ez(z)
will cause significant errors only near the bunch ends.
However, the maximum Zmax(r) values for the example
shown are Zmax{r=(0, 0.4, 0.8)×Rb }= 0.1, 0.09, 0.06 m.
(The symbols are plotted at Zmax values in Figure 6) I.E.,
there are few or no particles in the area of significant
deviation from Ez on-axis value.

Note that the off-axis potential u(r,z) as a function of r
may be used to determine the transverse field Er  for all
(r,z) that additionally could be employed, under some
circumstances,  to produce a very fast algorithm.

5 DISCUSSION AND CONCLUSIONS
For the examples given, a cylindrical vacuum pipe was
assumed. However, the procedure can be used to
accommodate more general chamber boundaries and
beam shapes and this generalization is planned. To reduce
simulation time, a range of slice geometries (in the
simplest case – a range of discs of different radii) will be
calculated and tabulated.

The required number of these “template” slices is an order
of magnitude less than the number of slices representing
the bunch. In the examples presented, 15 different slice
configurations were used requiring a computational time

of about 5 min (on a multi-user 433 MHz DEC Alpha).
The example bunch configurations were modeled as 100
distinct slices with the potential for each slice derived
from appropriate interpolation of the tabulated data and
scaling for charge density. The construction of the total
bunch potential required only about 0.2 s. Since the pre-
simulation calculations (about 5 min) need only be done
once while the accelerator simulations require many
computations of the total bunch potential (about 0.2 s) as
the particles are tracked through the system, the decrease
in overall computational time will be enormous.

Figure 6. The dependence of u(r,z)[V] and the field Ez(r,z)
[V/m] as a function of z for r = (0, 0.4 and 0.8)×Rb [m].

We are aware that the proposed sub-3-D PIC code will not
be completely self-consistent since the planned pre-
simulation calculational procedure will be unable to
reflect all possible evolutions of the particle density.
However, preliminary studies of the radial dependence of
Ez field for different distributions suggests that the effect
of variations in the transverse charge distribution is minor,
and therefore, the analysis will be nearly self-consistent.
Comparisons with the general 3-D codes are planned.

The authors are grateful to F.Marti for useful discussions.
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