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Abstract

In this paper a new technique for the accurate calculation
of magnetic fields in the end regions of superconducting
accelerator magnets is presented. This method couples
Boundary Elements (BEM) which discretize the surface
of the iron yoke and Finite Elements (FEM) for the mod-
elling of the nonlinear interior of the yoke. The BEM-FEM
method is therefore specially suited for the calculation of 3-
dimensional effects in the magnets, as the coils and the air
regions do not have to be represented in the finite-element
mesh and discretization errors only influence the calcula-
tion of the magnetization (reduced field) of the yoke. The
method has been recently implemented into the CERN-
ROXIE program package for the design and optimization
of the LHC magnets. The field shape and multipole errors
in the two-in-one LHC dipoles with its coil ends sticking
out of the common iron yoke is presented.

1 INTRODUCTION

The design and optimization of the LHC magnets is dom-
inated by the requirement of an extremely uniform field
which is mainly defined by the layout of the superconduct-
ing coils. Even very small geometrical effects such as the
insufficient keystoning of the cable, the insulation, grad-
ing of the current density in the cable due to different ca-
ble compaction and coil deformations due to collaring, cool
down and electromagnetic forces have to be considered for
the field calculation. In particular for the 3D case, com-
mercial software has proven to be hardly appropriate for
the field optimization of the LHC magnets. Therefore the
ROXIE program package was developed at CERN for the
design and optimization of the LHC superconducting mag-
nets. Using the BEM-FEM coupling method [1] yields the
reduced field in the aperture due to the magnetization of
the iron yoke and avoids the representation of the coil in
the FE-meshes.

2 THE BEM-FEM COUPLING METHOD

The total magnetic induction~B in a certain point~ξ in the
aperture of the magnet can be decomposed into a contribu-
tion ~BS due to the superconducting coil and a contribution
~BR due to the magnetic yoke. If the fields are expressed in
terms of the magnetic vector potential~B = curl ~A, then the
decomposition into source and reduced contributions gives

~A = ~AS + ~AR. (1)

This approach has the following intrinsic advantages: (1)
The coil field can be taken into account in terms of its
source vector potential~AS, which can be obtained easily
from the filamentary currentsIS by means of Biot-Savart
type integrals without meshing of the coil. (2) The BEM-
FEM coupling method allows for the direct computation of
the reduced vector potential~AR rather than the total vec-
tor potential ~A. Then numerical errors do not influence
the dominating contribution~AS due to the superconducting
coil. (3) The surrounding air region needs not to be meshed
at all. This simplifies the preprocessing and avoids artifi-
cial boundary conditions at some ”far” boundaries. More-
over, the geometry of the permeable parts can be modified
without taking care of the mesh in the surrounding air re-
gion. This strongly supports the feature based, paramet-
ric geometry modelling which is required for mathematical
optimization.
When the BEM-FEM coupling method is applied, only the
magnetic sub-domainΩi which coincides with the mag-
netic yoke has to be discretized by finite elements. Iron
saturation effects can then be dealt with within the finite el-
ement framework. The nonmagnetic sub-domainΩa which
represents the surrounding air region and the excitation coil
is treated by the boundary element method. Only the com-
mon boundaryΓ needs to be discretized by boundary el-
ements. The source vector potential~AS can be obtained
from the filamentary currentIS by means of the Biot-Savart
type integral

~AS = µ0IS

∮
C

u∗ d~l. (2)

In (2), the Green’s functionu∗ is the fundamental solution
of the Laplace equation, which is in 2D

u∗ = − 1
2π

ln |~x − ~ξ| (3)

and in 3D

u∗ =
1

4π|~x − ~ξ| . (4)

~ξ is the evaluation point of~AS and~x is the integration point
onC.

2.1 The FEM part

Inside the magnetic domainΩi a gauged vector-potential
formulation is applied. With Maxwell’s equations
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curl ~H = ~J anddiv ~B = 0 for magnetostatic problems,
the constitutive equation

~B = µ( ~H) · ~H = µ0( ~H + ~M) (5)

and the vector-potential formulation~B = curl ~A we get

1
µ0

curlcurl ~A = ~J + curl ~M. (6)

Introducing the penalty term−grad 1
µ0

div ~A the weak for-
mulation reads

1
µ0

∫
Ωi

(curl~w · curl ~A + div~wdiv ~A) dΩi

−
∮

Γai

~w ·
(

1
µ0

curl ~A × ~n − 1
µ0

(div ~A)~n
)

dΓai

−
∫

Ωi

~M · curl~w dΩi =
∫

Ωi

~w · ~J dΩi (7)

which can be transformed to

1
µ0

∫
Ωi

grad( ~A · ~ea) · gradwa dΩi

− 1
µ0

∮
Γai

(
∂ ~A

∂ni
− (µ0

~M × ~ni)

)
· ~wa dΓai =

∫
Ωi

~M · curl~wa dΩi +
∫

Ωi

~wa · ~J dΩi (8)

a = 1, 2, 3 and

~w1 =


w1

0
0


 , ~w2 =


 0

w2

0


 , ~w3 =


 0

0
w3


 . (9)

The continuity condition of~Ht on the boundary between
iron and air leads to

∂ ~AFEM

∂ni
− (µ0

~M × ~ni) +
∂ ~ABEM

∂na
= 0. (10)

~ni is the normal vector onΓai pointing out of the FEM
domainΩi and~na is the normal vector onΓai pointing out
of the BEM domainΩa. The boundary integral term on
the boundary between iron and airΓai in (7) serves as the
coupling term between the BEM and the FEM domain. Let
us nowassume, that the normal derivative onΓai

~QΓai = −∂ ~ABEM
Γai

∂na
(11)

is given a priori. If the domainΩi is discretized into finite
elements (C0-continuous, isoparametric 20-noded hexahe-
dron elements are used), and the Galerkin method is ap-
plied to the weak formulation, then a non linear system of
equations is obtained

([
KΩiΩi

] [
KΩiΓai

]
0[

KΓaiΩi

] [
KΓaiΓai

] [
T
]
)

{
~AΩi

}{
~AΓai

}{
~QΓai

}

 =

(
0
0

)

(12)

with all nodal values of~AΩi , ~AΓai and ~QΓai grouped in ar-
rays. The subscriptsΓai andΩi refer to nodes on the bound-
ary and in the interior of the domain, respectively. The do-
main and boundary integrals in the weak formulation yield
the stiffness matrices

[
K
]

and the boundary matrix
[
T
]
.

The stiffness matrices depend on the local permeability dis-
tribution in the nonlinear material. All the matrices in (12)
are sparse.

2.2 The BEM part

By definition the BEM domainΩa does not contain any
iron and therefore~M = 0 andµ = µ0. One more integration
by parts of the weak integral form (8) and choosing the
Cartesian components of the vector weighting function as
the fundamental solution of the Laplace equation yields

Θ
4π

~A +
∮
Γai

~QΓai u
∗ dΓai +

∮
Γai

~AΓai q
∗ dΓai

=
∫
Ωa

µ0
~Ju∗ dΩa (13)

with the abbreviationq∗ = ∂u∗
∂na

. The right hand side of
Eq. (13) is a Biot-Savart type integral for the source vec-
tor potential ~As. The vector potential~A at any arbitrary
point ~r0 ∈ Ωa can be computed from (13) once the vec-
tor potential ~AΓai and its normal derivative~QΓai on the
boundaryΓai are known. Θ is the solid angle enclosed
by the domainΩa in the vicinity of~r0. For the discretiza-
tion of the boundaryΓai into individual boundary elements
Γai,j , C0-continuous, isoparametric 8-noded quadrilateral
boundary elements are used. The functions~AΓai and ~QΓai

are expanded with respect to the element shape functions
and (13) can be rewritten in terms of the nodal data of the
discrete model,

Θ
4π

~A = ~As −
{

~QΓai

} · {g}− { ~AΓai

} · {h}. (14)

In (14),g results from the boundary integral with the kernel
u∗ andh results from the boundary integral with the kernel
q∗. The discrete analogue of the Fredholm integral equa-
tion can be obtained from (14) by successively putting the
evaluation point~r0 at the location of each nodal point~rj .
This procedure is called point-wise collocation and yields
a linear system of equations,[

G
]{

~QΓai

}
+
[
H
]{

~AΓai

}
=
{

~As

}
. (15)

In (15),
{

~As

}
contains the values of the source vector po-

tential at the nodal points~rj , j = 1, 2, . . . . The matrices[
G
]

and
[
H
]

are unsymmetric and fully populated.

2.3 The BEM-FEM Coupling

An overall numerical description of the field problem can
be obtained by complementing the FEM description (12)
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by the BEM description (15) resulting in

[
KΩiΩi

] [
KΩiΓai

]
0[

KΓaiΩi

] [
KΓaiΓai

] [
T
]

0
[
H
] [

G
]




{

~AΩi

}{
~AΓai

}{
~QΓai

}

 =


 0

0{
~As

}

 .

(16)

Equation (15) gives exactly the missing relationship be-
tween the Dirichlet data

{
~AΓai

}
and the Neumann data{

~QΓai

}
on the boundaryΓai. It can be shown [2] that this

procedure yields the correct physical interface conditions,
the continuity of~n · ~B and~n × ~H acrossΓai.

3 RESULTS

The Large Hadron Collider (LHC) to be built at CERN
requires high-field superconducting magnets to guide the
counter-rotating beams in the LEP tunnel with a circumfer-
ence of about 27 km. The design and optimization of these
magnets is dominated by the requirement of an extremely
uniform field, which is mainly defined by the layout of the
superconducting coils. In order to study, with a fast turn-
around rate, the influence of individual coil parameters,
the pre-stress in the coil, the collar material and the yoke
structures, a short-model dipole program was established
at CERN. 20 single-aperture models and 3 double-aperture
models have been built and tested since mid 1995 in addi-
tion to 5 long-model prototypes built in European industry.
Unlike in the main dipole prototypes with a magnetic
length of 14.2 m, the field quality in the center of the short
dipole models (with a coil length of 1.05 m and the length
of the magnetic yoke of only 402 mm) is affected by the
coil ends. In order to study systematic effects in the field
quality due to manufacturing tolerances, and coil deforma-
tions due to assembly and cool-down of the magnet it is
necessary to calculate, with a high precision, the 3D inte-
grated multipole field errors. This is important as the mea-
surement coil used at present has a length of about 200 mm
(half the length of the magnetic yoke). Fig. 1 shows the ge-
ometric model of the coiltest facility (CTF). Fig. 2 shows
the relative multipole componentsb3, b5 andb7 (related to
the main fieldB1 of 8.2452 T calculated at 11530 A for the
two dimensional model, at 17 mm ref. radius, in units of
10−4 ) as a function of the z-position. z = 0 is the center of
the magnet. The iron yoke ends at z = 201 mm.
At about nominal current, theb3 component in the center of
the short model dipole does not reach the 2D cross-section
value of 4.2 units due to globally different saturation ef-
fects. At 4000 A theb3 shows a local enhancement of
only about 0.3 units near the aperture and reaches its cross-
section value of 2.9 units about 100 mm inwards the yoke.
Theb5 and in particularb7 and higher order multipoles are
little influenced by three-dimensional effects.

4 CONCLUSION

The BEM-FEM method is specially suited for the calcula-
tion of 3D effects in superconducting magnets, as the coils

               

                                     

Figure 1: ROXIE model of the CTF
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Figure 2: Relative multipole components
(at r= 17 mm, in units of10−4) as
a function of the axial position

and the air regions do not have to be represented in the
finite-element mesh and discretization errors only influence
the calculation of the yoke magnetization. The method has
been applied to the calculation of multipole errors in the
short dipole models for the LHC. Results show that the
models are representative for the long dipole prototypes
only at low and medium excitation. At nominal excitation,
the sextupole measured in the center of the magnet is more
than one unit lower than in the center of the long magnets.
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