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Abstract

Conventional approach to the designing of
controlled systems is to start with calculation of program
motion and to continue afterwards by examining
perturbed motions using equations in deviations. It does
not always, however, result in desirable outcomes. Thus,
while analysing perturbed motions, which depend
significantly on the program motion, it can happen, that
dynamical characteristics of obtained perturbed motions
are not satisfactory.

This paper suggests new mathematical models,
which allow joint optimization of program motion and an
ensemble of perturbed motions. These mathematical
models include description of controlled dynamical
process, choice of control functions or parameters of
optimization as well as construction of quality
functionals, which allow efficient evaluation of various
characteristics of examined control motions.

This optimization problem is considered as the
problem of mathematical control theory. The suggested
approach allows to develop various methods of directed
search and to conduct parallel optimization of program
and perturbed motions. Suggested approach is applied to
the optimization of RFQ channel. Simple model for
description of beam longitudinal motion in the equivalent
running wave is suggested. For the estimation of beam
dynamics corresponding functionals are suggested.

1  MATHEMATICAL MODELS OF
OPTIMIZATION

First we consider following dynamic system:

dx

dt
f t x u= ( , , ) ,                                     (1)

dy

dt
F t x y u= ( , , , ) ,                                (2)

with initial conditions:
x x y M( ) ( )0 00 0 0= = ∈,     y ;               (3)

Here t  is time, x  is n-vector, u u t= ( )  is r-

dimensional control vector function, y  - m-vector,

f t x u( , , )  and F t x y u( , , , )  are n-dimensional and  m-

dimensional
___________________
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 vector functions correspondingly. We assume that f , F

and div F F yy i ii

m
=

=∑ ∂ ∂
1

 are continuous with their

partial derivatives. The set M0  is a given compact set in

the phase space of nonzero measure in R m . We assume
that admissible controls u t( )  constitute certain class D
of functions, that are piecewise continuous on interval

[ , ]0 T  and have values in a compact set U R r⊂ .

Equation (1) describes dynamics of synchronous
particle. Here in this paper we will consider this motion
as the program one. Equation (2) is the derivations
equation describing perturbed motions.

Along with equations (1), (2) we consider
changes of density of particles ρ( , )t y , along the system

(2) trajectory:
d

dt
div F t x t y t u ty

ρ
ρ= − ⋅ ( , ( ), ( ), ( )) ,         (4)

ρ ρ( , ( )) ( ),0 0 0 0 0 0y y M= ∈    y ,           (5)

where ρ0 0( )y is density of particles distribution at the

set M0 .

We introduce following functionals:

I u c t x t u t dt c g x T))
T

1 1 1
0

2 1( ) ( , ( ), ( )) ( (= +∫ ϕ ,   (6)

I u c t dt c G
T

2 3 1
0

4 2( ) ( ( )) ( )= + ⋅∫ Φ ω ω .               (7)

Here ci (i = 1,2,3,4)  are non-negative constant,

ω ϕ ρ1 2( ) ( , ( ), , ( , ), ( ))
,

t t x t y t y u t dyt t
M

t

t u

= ∫ ,      (8)

ω ρ2 2= ∫ g y T, y dyT T
M

T

T u

( , ( ))
,

,                               (9)

where set M t u,  is the cross-section of trajectories set of

system (2) at the moment t , that can be obtained by time
shift of the initial set M0  at corresponding control

u u t= ( ) :

M y t y x t u t

M ,  x( ) x
t u t t, ( , , ( ), ( ))= =

∈ =
{  y  |  y

               y  },
0

0 0 00
        (10)

functions ϕ1 1,g , ϕ 2 2,g , Φ , G  are continuously

differentiable functions, T  is fixed.
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Together with the functional (6), which
characterizes dynamics of program motion, and the
functional (7), which characterizes beam of particles with
taking into account their density of distribution, we
introduce following functional:

I u I u I u( ) ( ) ( )= +1 2 .                          (11)

The functional (11) estimates dynamics of program and
perturbed motions and allows to conduct their
optimization.

By using methods of investigation of functionals
(6), (7) types presented at the work [1] variation of
functional (11) (at admissible variation of control
∆u t u t u t( ) ~( ) ( )= − ) can be represented in the

following form:

δ χ ϕ

µ ω ϕ

ν

I f c dt

F c dy dt

div F dy dt

u u

T

u u t
M

T

u y t
M

T

t u

t u

= − ⋅ − ⋅

− ⋅ − ⋅ ′ ⋅

− ⋅

∫

∫∫

∫∫

( )

( ( ) )

( ) .

*

*

,

,

∆ ∆

∆ Φ ∆

∆

1 1
0

3 1 2
0

0

  (12)

Here ∆ u  denotes increment of a function at only

increment of variable u , for example,
∆ ∆u f f t x u u f t x u= + −( , , ) ( , , )) .

Auxiliary functions χ( )t , µ( , )t y t , ν( , )t y t

satisfy the following systems along the trajectories of
systems (1), (2), (4):

d

dt

f

x
c

x

F

x

div F

x
dy

c t
x

dy

y

t
M

t
M

t u

t u

χ ∂
∂

χ
∂ϕ
∂

∂
∂

µ ν
∂

∂

ω
∂ϕ
∂

= − ⋅ + ⋅

− ⋅ + ⋅

+ ⋅ ′ ⋅

∫

∫

( ) ( )

(( ) ( ) )

( ( )) ( ) ,

* *

* *

*

,

,

1
1

3 1
2Φ

               (13)

d

dt

F

y
E div F

div F

y
c t

y

y

y

µ ∂
∂

µ

ν
∂

∂
ω

∂ϕ
∂

= − + ⋅ ⋅

− ⋅ ⋅ ′ ⋅+

( )

( ) ( ( )) ( ) ,

*

* *
3 1

2Φ
   (14)

d

dt
div F

c t

y

ν
ν

ω ϕ ρ
∂ϕ
∂ρ

= − ⋅

+ ⋅ ′ ⋅ − ⋅3 1 2
2Φ ( ( )) ( ),

              (15)

and terminal conditions

χ
∂

∂
( )

( ( )) *

T c
g x T

x
= − ⋅2

1
,                              (16)

µ ω
∂ ρ

∂
( ) ( )(

( , )
) ,*T,y c G

g y

yT
T T= − ⋅ ′4 2

2
    (17)

ν ω ρ

ρ
∂ ρ

∂ρ

( ) ( ) ( ( , )

( , )
),

T, y c G g y

g y
T T T

T
T T

= − ⋅ ′ ⋅ −

−

4 2 2

2       (18)

where ρ ρT TT y= ( , ) , , ′ =G dG d( ) ( )ω ω ω2 2 2 ,

′ =Φ Φ( ) ( )ω ω ω1 1 1d d .

The representation (12) of functional variation
allows to construct various methods of optimization for
functional (11).

2  BEAM DYNAMICS MODELLING
Let us consider charge particle dynamics in RFQ

channel. Longitudinal motion in equivalent running wave
can be represented in the following form:

d

dt

eU

W L
L

s

β
ω τ ϕ= ⋅ ⋅ − +

2

0

Θ
Ψcos(~ ) .      (19)

Here β = &z c , τ = ct , ~ω πω= 2 c ,

Ψ Ω Ω∆= =∫ ( )ξ ξd z
z

zs

, Ω = 2π L , UL  - intervane

voltage, Θ  - accelerating efficiency, W0  - rest mass

energy, L  - period length, ω  - accelerating field

frequency, ϕ s  - synchronous phase.

For synchronous particle ~ωτ = Ωzs  and, hence

d

d

eU

W L
s L

s

β
τ

ϕ=
2

0

Θ
cos ,                             (20)

d z z

d

eU

W L

z z

s L
s

s s

2

2
0

2( )
(cos

cos( ( ) )),

−
= −

− − +
τ

ϕ

ϕ

Θ

Ω
               (21)

Let us make notations:

Ω
Θ

0
2

0 0
2

4
=

πe U

W L
L( ) max

, η =
( )

( ) max

U

U
L

L

Θ
Θ

,

and use new variables:
ψ = −Ω( )z zs , ~τ τ= Ω0 .

After all transformation equations (20), (21) takes form:
d

d
L L k s~ ( ) (~) cos (~)

τ
η τ ϕ τ0

2 2= ⋅ ⋅ ,           (22)

2809

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999



′′ +
′

′ +
′′

−

− − + =

ψ ψ ψ

η
ϕ ψ ϕ

( / )

( / )

( / )

( / )

( )

( / )
(cos cos( )) ,

L L

L L

L L

L L

y

L L s s

0
2

0
2

0

0

0
2 0

        (23)

where the stroke denotes the derivative with respect to ~τ
and k = Ω0

~ω .

Various optimization problems of longitudinal
motion can be formulated on the basis of equations (22),
(23). Further we will consider the functions
u1 = η τ(~) and u s2 = ϕ τ(~)  as control functions.

It should be noted that all accelerators with the
same plots ϕ τs (~)  and η τ(~)  and with k=const has

similar beam behaviour. The relation between unites ~τ
and period number N  is defined by kN = ~τ .

3  OPTIMIZATION CRITERIA
As the aim of RFQ structure optimization we

consider the following: obtaining of maximal capture of
particles under the acceleration regime; obtaining of
required or maximal possible output energy; minimization
of defocusing factor effect; obtaining of monotonicity of
particles’ grouping which reduces Coulomb forces’ effect
on the dynamics of charged particles, subsequently
improves the dynamic process in RFQ channel.

Let x L L= ( / )0
2 ,   y y y= = ′( , ) ( , )* *

1 2 ψ ψ ,

M y y0 1 2 2= − ≤ ≤ ≤ ≤{ | , } y   1π π θ θ
For the process dynamics assessment we

introduce functionals:

I u c A d c x T xdef

T

1 1 1
0

2
2( ) ( ) ~ ( ( ) )= + −∫ ϕ τ ,       (24)

A
k

L L

k u u

xdef

s= =
2 22

0
2

2
1 2η ϕsin

( )

sin
,

I u c w t d
T

2 3 1
0

( ) ( ( )) ~,= ∫ Φ τ                                    (25)

w t
d

d
dy

dy y y dy

M

M M

u

u u

1
2

1 22 2

( ) ~ ( )

( ~, , ) ,

~

~ ~

~ ,

~ , ~ ,

= ⋅ =

′ ′ =

∫

∫ ∫
τ

ψ ρ

ψψ ρ τ ψ ψ ρ

τ

τ τ

τ

τ τ

I u I u I u( ) ( ) ( ).= +1 2                                               (26)

Here  ϕ1  and Φ  are penal functions, which can be

introduced in following way:

ϕ1 2

0
( )

,

( ) ,
A

A

A A Adef

def

def
p

def

=
≤

− >





                   A

   A
,

Φ( )
,

,
w

w q1
1

2

0 0

0
=

≤

>




       w

   w
1

1

,

where p q,  are certain positive integer constants.

A def  is defocusing factor; x L L= =( / ) ( / )0
2

0
2β β

is fixed value, which determines velocity of synchronous
particle at the output of accelerator; ρ ρ τ ψ ψ= ′(~, , )  is

density of particle distribution.
Functional (24) integrally estimates the deviation

of defocusing factor from given value and accounts the
deviation of synchronous particle velocity from given one
at the output of accelerator. Functional (25) characterizes
velocity of variation of mean square phase distribution. In
this connection, condition w1 0≤  ensures the

monotonicity of grouping and simultaneously ensures the
capture of particles into acceleration mode.

On the basis of variation (12) for the functional
(26) numerical methods of optimization which allow joint
minimization of functionals (24), (25). The realization of
these methods shows their effectiveness.

4  CONCLUSION
Under RFQ structure optimization following

parameters are considering as controlling: voltage
between electrodes, modulation of electrodes, mean value
aperture on the period of modulation, synchronous phase,
i.e. each cell of developing structure is described by all
parameters for each cell ([2]). In this case full-scale
modeling of particles dynamics and conducting of
optimization require much time and numerous attempts.
Such approach seems to be reasonable for improvement
of parameters in the vicinity of chosen already variant.

Thus for the practical use of optimization
methods it is necessary to use step by step method of
choice of RFQ structure parameters. At each stage of this
calculation various mathematical models with growing
level of complexity should be considered.

In this paper the simple mathematical model
which describes beam dynamics in RFQ channel is
suggested, that can be used on the initial stage of
optimization. Suggested mathematical models of
optimization and developed  methods and approaches of
their analysis allow effective optimization of the RFQ
channel.

It should be noted , that developed methods of
optimization can be applied to the optimization problem
of intense beam dynamics.
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