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Abstract
The conditions reviewed for degeneration in an electron
bunch treated as a Fermi gas. Some comparison made
for photoinjectors and storage rings. In some cases a
quantum limitations are very close.

1 INTRODUCTION

In recent times some interest is growing to the beams
with minimal emittance [1-3]. Schemes proposed which
look like they even could reach the quantum limit in
beam emittance. However, in some of these publications
claimed that the minimal normalized emittance of the
beam is defined by uncertainty principle only like

2/min CD≡γε , where 111086.3/ −⋅≅= mcC hD cm  –is a

Compton wavelength [2,3]. Meanwhile it is well known
that the Fermi-particles could not occupy the same
states.  This fact yields that for the beam with population
equals N, the minimal emittance is N times bigger, than
indicated above.  This fact was illuminated first in [1].

2 CONDITION FOR DEGENERATION

Electron gas has a tendency to generate with lowering
its temperature. If gas is fully degenerated, each state
occupied by a pair of electrons having different spin
orientation. Basically we have definition of degenerated
state as one having temperature small compared with

Fermi energy FE  [4]. The last is the highest one while

states are tightly packed. We will consider the minimal
emittance definition from two slightly different
approaches. First uses the fact, that there are no free

states in a system below FE . This yields that the

number of states equals to the number of the particles in
the beam. This definition basically corresponds to
assumption that the beam has zero temperature. We will
simply calculate the number of allowed states. The
second approach, indeed, uses the definition of the
beam temperature in a moving system of reference. We
compare the emittance restrictions obtained with these
two approaches. Ultrarelativistic electron gas becomes
more ideal in a Lab frame with increasing its energy
due to cancellation of forces between the particles as

≈1 2/γ . In principle, some amount of particles with

opposite charge can be added to the beam moving along
a straight line in a focusing channel [7].

  Now let us  estimate  the minimal emittance  from  the
compact packing approach. For the electrons in a volume
V, the number of states with absolute magnitude of
momentum in the interval from px y s, , to p dpx y s x y s, , , ,+  is

  dn
dp dp dp Vx y s≅

⋅
2

2 3( )πh
,                       (1)

where factor 2 reflects  two possibilities for spin
statement. Let us suggest that all lower states are
occupied up to the highest one. Then the number of the
states equals to the number of the particles in the
volume. The Fermi-momenta Fp  defined as
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where  FB p/2 hπλ ≅  is the length of the de-Broigle

wave corresponding to the particle with Fermi energy.
So the density VN/  in degenerated Fermi-gas
corresponds to the reverse cube of de-Broigle
wavelength, corresponding to the Fermi momenta. In
formula (1) for the number of states the variables
(momenta and coordinate) are canonically conjugated.
The particles in a focusing system behave more likely as
a harmonic oscillator. Description of transverse motion
with envelope function satisfy the requirements to be a
canonically conjugated as

  yyxxyyxxyx mcmcSpp βεβεβεγβεγ ⋅⋅⋅≅⊥ // ,  (3)

where β x ,y –are the envelope function. The total number

of electrons in these states can be estimated for uniform
distribution from (1) using (3)
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where )/( 0pplbs ∆= γγε –is an invariant longitudinal

emittance, lb –is the bunch length, )/( 0pp∆ – the

relative momentum spread in the beam, γε x  and γε y –

are the transverse horizontal and vertical emittances. We
can also say, that the beam with the number of the
particles N cannot have emittances lower than defined by
(5) as all lower states are occupied. So in that sense
formula (5) corresponds to  zero  beam  temperature  and
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cold be treated as absolute lower limit for the beam
emittances. The right side in (5) is tremendously small
as 303 104.1)2( −⋅≅CDπ cm3. So even for 1010≅N  the

right side in (5) will be 2010−∝ cm3.
   Now let us estimate the minimal emittance from the
requirement that the beam temperature is much less,
than the Fermi energy. This condition is weaker, that
(5). From (2) one can obtain

3/13/1 2)8/3( ρππ h=Fp ,                    (6)

were VN /≈ρ  –is a density in the rest frame. From

(6) one can obtain, that the Fermi energy is

( ) 3/2
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h≅=               (7)

or               3/13/12 )3( ρπ ccpE FF h== ,              (8)

if  the particles in  the  rest frame  are  relativistic. The
formulas (7), (8) represent the height of the well.
Using (7) or (8) one can find the condition for
degeneration as

3/232
3/22

)(
2

)3( ρπ
CB mcTk D≤ ,

or               3/1323/12 )()3( ρπ CB mcTk D≤ ,

where 231038.1 −⋅≅Bk J/oK –is Boltzmann’s constant.

The electron gas temperature T in a moving frame can
be calculated using (3). The transverse momenta is
invariant and the transverse kinetic energy is
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Full energy is a sum of kinetic and potential energy of
motion in a focusing system. According to the virial
theorem for harmonic oscillator the average potential
energy equals to the kinetic one. So the temperature of
the beam could be represented as the following

]/)/([ 2
0

22
2
3 γββγεβγεγ ppmcNTNk yyxxB ∆++⋅≅ , (9)

where 12 ≅β – is a square of normalized speed in the

lab frame.  Let us consider one example. In damping
rings developed as injectors for future linear colliders,

typical values are ≅yx,β 10m, 1≅bl cm, 4105/ −⋅≅∆ pp ,

3≅sγε cm, 4103 −⋅≅xγε cm rad, 6103 −⋅≅yγε cm rad.

This gives ]104103103[ 11972
2
3 −−− ⋅+⋅+⋅≅ γmcTkB

. One

can see that despite the longitudinal emittance is the
biggest one, the longitudinal temperature is the lowest
one.   This yields the possibility for redistribution the
temperatures.   Compare formula (9) with (8) one can
obtain for relativistic electron gas
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where γρρ /0= , 0ρ  –is the density  in  the  Laboratory

frame. Neglecting the longitudinal temperature and
supposing that, γε γεx y≈  one can obtain the condition

  )/()( 3324
bCxx lN γβγε D≤ .                    (10)

Substitute here for estimation 1≈≈ bx lβ cm,

N ≈ 1010 , γ ≅ ⋅6 103 , one can obtain 8102 −⋅≤xγε  cm

rad. This is estimation for the maximal possible
transverse emittance required for degeneration. One can
compare this figure with the one suggested for the Linear
Collider. From the other hand this is not drastically
lower, than for specially designed coolers, see lower.

3 REDUCTION OF DIMENSIONS

We suggested that the phase space corresponds to 3D
motion in real space. So the particle could reach every
point in phase space. Defining the speed of motion in the

rest frame as mTkv B /3≅ , one can find the

frequency of collision fx y, with the potential wall as
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like it must be if one transforms the frequency into
moving frame. This frequency does not depend on
emittance. For longitudinal motion one can estimate

bbs lppclvf γγ )/(∆≅≅ . So one can see that the

frequency of longitudinal oscillations is much smaller,
than the transverse. In motion along the focusing channel
the longitudinal motion is practically absent at all.  So
for a two-dimensional phase space

 NCyx
2

2
1 )2)(())(( Dπεγγε ≥ .                (12)

Considerations [5] show that thermalization due to
intrabeam scattering (also through the third agent, such
as a resistive wall or parasitic cavity) can happen only
when momentum compaction factor is negative.
 From quantum mechanical consideration of the
problem, for N fermions the wave function is fully anti-
symmetric one. It could be written as a Slater's
determinant. As the particles experience the motion in a
kind of harmonic oscillator potential, the energy of each
particle is proportional

3,2,1,2
2
1 =+≅ ∑ ixKEE iikin ,        (14)

where Ki–is the effective rigidity for selected degree of
freedom. Using methods of quantum mechanics one can
obtain that the energy of ground state is

)
2

(
1

13,1
0 ∑∑

−

==

+⋅=
N

ni
i n

N
E ωh ,                 (15)

where n counts the states occupied and mKii /=ω  –

is a partial frequency. Expanding (15) one can obtain
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 3,2,1,2
0 =⋅=⋅= ∑ iJNE i ωω rr

h ,      (16)

where 2NJ ⋅= h
r

could be treated as total action. So for

one degree of freedom using (3) one can obtain

NmcNmcxp xxxxxx )(/ γεβεβεγ ⋅≅⋅≅∆⋅ .          (17)

This could be called the total action for selected degree
of freedom. Equaling (16) to the value of action from
(17) one can find the minimal emittance as

  NNmcN Cx Dh =⋅≅ /)( 2γε .               (18)

 For a typical bunch population 1010≈N  (18) will be

38.010.108.3)( 1011 =⋅≅ −
xγε  cm only. So we are coming

to fundamental conclusion that one-dimensional system
is always degenerated under real conditions. That means
that there is no dynamic aperture for the particles in 1D.
In that sense the claim that so called Mobius ring [6]
brings particle motion into 1D and, hence, has some
advantages, needs to be treated with cautions.

4 COOLERS AND BEAMS

 One type of a cooler able to reach extreme emittances
considered in [7]. Basically it contains the dipole
wigglers and accelerating cavities installed in series so
the average energy of the beam kept constant. It gives
the emittances obtained after considerations the
radiation dynamics for a single electron as

DD /)2/1()()( 2
2

1
xxxCx KK+⋅≅ βγε        (19)

DD /)()( 2
1

xyCy Kβγε ⋅≅ ,               (20)

where β x y, –are averaged envelope functions in the

wiggler. 22/ mceHK πλ⊥= , ⊥H –is the magnetic

field in the wiggler, λ –is the wiggler period. The last
formulas together with the cooling time

τ γcool cK≅ ⋅( ) ( / )3
2

2 2
D ,                    (21)

defines the cooling dynamics under SR. One can see
that equilibrium invariant emittances do not depend on
energy. In addition, quantum equilibrium vertical
emittance and the cooling time do not depend on the
wiggler period. For successful operation of Laser Linear

Collider the only N ≈ 106  particles required [6]. If the

1/ ≈DxyKβ , then, formally, the emittance could be

close to Cy D)()( 2
1≈γε . The last means that quantum

limitations for the lowest emittance are important here.
So one can treat this as emittance occupied by a phase
trajectory of a single electron. For radiation in dipole
wiggler the electron in a ground state remains radiating
the photons. So to damp the transverse emittance any
electron must re-radiate its full energy. This brings
some final equilibrium emittance like (19), (20). Until
this emittance   is  big  compared  with  (4)  there  is  no

confusion.
In [3] there was considered the radiation effects in a
focusing channel. The last might be a sequence of
focusing and defocusing lenses (what is basically a
quadrupole wiggler). Here the electron in a ground state
is not radiating. So there is no formal requirements for
re-radiation of particle’s full energy. However in this
publication was clamed that the energy of the ground
state is )( 2

1
0 nE += ωh , n=0 and the minimal

emittance for the beam here could be as low as

Cy D)()( 2
1≈γε . One can see that the factor associated

with the number of the particles is missed here. One can
see also that there are no advantages between dipole and
quadrupole wiggler from the point of minimal emittance.
We can add, that the quantum limitation occurs much
earlier. In contrast, the cooling time for a traditional
dipole wiggler is much smaller, than for quadrupole one.
    In [8] there was considered the radiation of a
relativistic electron in a solenoid. It was shown here that
radiation here carries out the transverse energy only. In
that sense the particle in a ground state is not radiated
also. This means that electron can decrease its’ emittance
without re-radiation of its’ full energy.
    There was made a comparison of the lowest emittances
in the RF photo-injectors and (5) in [9]. In some cases
the quantum limitation (5) is close.
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