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Abstract

We recently proposed a new analytical model that incorpor-
ates the dispersion function into the framework of the rms
envelope equations. Here we show how it can be used to
achieve proper matching of space charge dominated beams.
Comparison is done against a PIC code (WARP) simula-
tions.

1 INTRODUCTION

Understanding the combined effect of space charge and an
energy spread in a circular lattice and more specifically,
inclusion of space charge forces in the calculation of the
dispersion function has been the subject of a number of pa-
pers over the last few years[1−6] The surge of interest has
been motivated by the need of high intensity and quality
beams in applications like the Spallation Neutron Source,
the drivers for Heavy Ion Fusion or in studies of beam phys-
ics as in the Maryland Electron Ring [7]. In all these cases
meeting optimal matching conditions (including the disper-
sion function) will be critical for a proper machine opera-
tion. In the presence of very high beam currents the cal-
culation of the dispersion function is complicated in two
regards: On the one hand space charge forces have to be
taken into account to compute the dispersion function prop-
erly; on the other dispersion itself has a role in determining
the space charge forces by affecting the beam shape. In
[4] we developed an analytical model that describes both
aspects of the interplay between space charge and disper-
sion for the case of continuous beams. The model is an
extension of the standard rms evelope equations that are
routinely used to solve the matching problem in straight
channels. It consists of a set of three coupled differential
equations for the horizontal and vertical envelopes and dis-
persion function. A distinctive feature is the dependence
on a generalized rms emittance, which unlike the usual rms
emittance is a linear invariant in the presence of an energy
spread and bending magnets. A preliminary positive test on
the validity of our generalized rms envelope equations was
already discussed in [4]. The test was carried out against
earlier calculations [5] involving a fully self-consistent ana-
lysis of beam distributions in smooth dispersive channels.
Later [6] we compared the solutions of the new equations
with simulations performed with a PIC code (WARP, [8])
for a periodic circular lattice consisting of FODO cells
and bends. At that stage no effort was done to match the
dispersion function at injection, while the envelopes were
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matched using the standard rms envelope equations. Com-
parison showed good agreement over the scale of the first
(depressed) betatron oscillation period. However, after the
first betatron oscillation period one could observe relaxa-
tion phenomena driven by the space charge nonlinearities
in the form of a damping in the oscillations of the hori-
zontal rms emittance and an increase in the vertical rms
emittance (see also [2]). These features are not captured by
the generalized rms envelope equations (if used in conjunc-
tion with the assumption that the vertical rms emittance and
the generalized rms emittance are invariant of the motion).
Nevertheless we speculated that for the purpose of determ-
ining the matching conditions those equations should be
adequate – as long as the matching is done over a length
shorter than the betatron oscillation period. In this paper we
finally test that guess and apply the generalized rms envel-
ope equations to the problem of determining the matching
conditions at both injection and extraction for the Mary-
land E-Ring. The results are reported in Section 3. First,
in Section 2 we briefly review the form of the generalized
rms envelope equations.

2 THE MODEL

The theory described in this paper applies to the dynam-
ics of a continuous beam of charged particles confined in a
dispersive channel and described by the Hamiltonian
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where vz is the longitudinal velocity,γ the relativistic
factor,m andq the mass and charge of the beam particles.
The self-force is described by the potentialψ. Each particle
has a momentump = p0(1 + δ), with a relative derivation
δ from the design momentump0; E0 is the correspond-
ing energy. The external focussing forces, described by
theκx andκy, are assumed to be linear. In this model we
also neglect chromatic effects (i.e. terms likex2δ in the
Hamiltonian). Finally,ρ is the local radius of curvature.
Also, notice that the model (1) does not entail beam ac-
celeration. The derivation of the generalized rms envelope
equations from the Hamiltonian (1) can be carried out fol-
lowing steps similar to those needed to derive the usual rms
envelope equations. The major differences are that i) there
are two additional equations involving the moments〈xδ〉
and 〈pxδ〉; ii) the usual rms emittance is more conveni-
ently replaced by a quantity [see below Eq. (3) ] that is a
linear invariant in the presence of an energy spread. Under
the assumption that the beam density maintains an ellipt-
ical symmetry it can be shown [4] that the beam envelopes
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σx =
√〈x2〉, σy =

√〈y2〉 and the dispersion functionD
obey the system of equations:
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where the generalized perveance isK = 2I/(I0β2γ3) with
I0 = 4πε0mc3/q (in MKS units), and

√〈δ2〉 is the relat-
ive rms momentum spread. In this model the dispersion
function D and its derivative are identified byD(z) =
〈xδ〉/〈δ2〉 andD′(z) = 〈pxδ〉/〈δ2〉. Physically this identi-
fication is legittimate if before injection〈xδ〉 = 〈pxδ〉 = 0
(i.e. the pairs(x, δ) and (px, δ) are uncorrelated). We
found this to be a natural way to extend the concept of
dispersion function to include beams of self-interacting
particles. The generalized rms emittanceεdx appearing in
the first equation in (2) is defined by

ε2dx = ε2x − 〈δ2〉〈[pxD(z) − xD′(z)]2〉, (3)

whereεx is the usual rms emittance. For matching purposes
Eqs. (2) are of practical use ifεdx does not change signific-
antly as a result of the nonlinearities associated with space
charge. One of our goals in checking Eqs. (2) against a PIC
code is to establish the extent to which such an assumption
is verified in practice.

3 MATCHING DISPERSION
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Figure 1: Dispersion function (in cm) with (solid line) and
without (dots) dispersion matching; I=50 mA.

In this section we report the simulations done with the PIC
code WARP to test various matching schemes worked out
using the generalized rms envelope equations (2). The cal-
culations presented here refer to a hard edge model of the

Maryland E-Ring [7]. The E-Ring is designed for circula-
tion of a 10 KeV electron beam with a current in the prox-
imity of 100 mA. It consists of 36 identical FODO cells,
each one including a10◦ dipole bend, for a circumference
length of 11.52 m. In the calculations reported here injec-
tion into the Ring is accomplished by a dispersion match-
ing module consisting of two dipoles and one quadrupole.
Matching of the envelopesσx andσy can be carried out
separately in the transport line between the electron source
and the dispersion matching module using the standard rms
envelope equations.
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Figure 2: Horizontal effective emittances (in units of mm-
mrad) and invariant (2) for the matched and mismatched
cases; I= 50 mA.

The first set of pictures shows results from simulations
obtained with the PIC code for a beam ofI = 50 mA,
corresponding to a tune depression ofν/ν0 = 0.29 [the
initial rms emittances areεx = εy = 12.5 mm-mrad and
the energy spread is 300 eV (i.e.

√〈δ2〉 = 0.015); such an
unrealistically large value has been chosen to emphasize
the effect of dispersion in this study]. The beam evolution
is followed from the beginning of the dispersion match-
ing module through one turn of the E-Ring and through
a dispersion matching module at extraction. The purpose
of the extraction module is to bring the dispersion func-
tion and its derivative back to zero. Specifically, Fig. 1
shows the profile of the dispersion function for the matched
case as calculated by WARP. For comparison we also report
the dispersion function that one would get if no dispersion
matching is done at injection (dots). In this case the dis-
persion function undergoes large oscillations that are rap-
idly damped by the space charge nonlinearities. In Fig. 2
the horizontal effective emittance is plotted for the matched
and mismatched cases together with the rms invariantεdx

defined in Eq. (3). One can observe that the damping in the
oscillations displayed by the disperson function in the mis-
matched case (see Fig. 1) is reproduced here. As a result,
the final value for the emittance that one can extrapolate
for the mismatched case is larger (although not dramatic-
ally) than the corresponding value of the emittance in the
case with dispersion matching (before extraction is done).
Notice however that after extractionεx is brought back to a
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value very close to the one it had initially. In other words, if
maching is done theεx emittance growth appears to be al-
most completely reversible (at least over one turn). This
is consistent withεdx remaining basically constant. On
the other handεdx increases noticeably in the mismatched
case.
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Figure 3: Vertical effective emittances (in units of mm-
mrad) for the matched and mismatched case; I=50 mA.
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Figure 4: Horizontal and vertical effective emittances and
invariant of Eq. (2) (in units of mm-mrad) for the matched
and mismatched case; I= 100 mA.

Next, in Fig. 3 the evolution of the vertical emittances
are reported. The rmsεy emittance increases because of
the nonlinear coupling with the horizontal motion induced
by space charge. This effect is not captured by Eqs. (2).
However, notice how a matching based on Eq. (2) never-
theless succeeds in reducing the amount of they-emittance
growth. The sharp growth that we can observe at extraction
is due in part to the fact that at extraction the matching was
done under the assumption thatεy was the same as at injec-
tion. In Fig. 4 we show the evolution of the emittances for
a case with larger currentI = 100 mA (corresponding to a
detuningν/ν0 = 0.15). In this case the matching is less ef-
ficient although still significant. In the last picture (Fig. 5)
we report the case in which the matching is done using the
equations proposed by A. Garren [1]. One can see that un-
der the regime we are considering that model would lead to

an even more pronounced mismatch (A. Garren's equations
coincide with Eqs. (2) in the zero energy spread limit).
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Figure 5: Horizontal and vertical effective emittances (in
units of mm-mrad) for a matching done using a less accur-
ate model; I= 50 mA.

4 CONCLUSIONS

The results reported in this paper show that use of the gen-
eralized rms envelope equations appears to be effective in
achieving acceptable matching conditions for space charge
dominated beams in the presence of an energy spread.
Moreover, if the tune depression is not extreme the rms
emittance growth in the horizontal plane due to dispersion
seems to be to a large extent reversible. A measure of the
non reversibility is given by the growth of the generalized
emittance defined in Eq. (3).
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