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Abstract

We consider the final stage of ionization cooling of muons,
realized with the use of bent current-carrying lithium-
beryllium rods, providing an optimum correlation between
the cooling rates in all tree directions and minimum value
of 6-dimensional emittance. The matching of lattice func-
tions in a rod with those in accelerator structure is consid-
ered.

1 INTRODUCTION

The final stage of ionization cooling is characterized with
reasonably low 6-emittance of muon bunches, achievable
by very small magnitudes of betatron functions of the beam
in slowing medium. Meanwhile the relative energy spread
in a beam is not small, being equal to several percents even
by optimum distribution of summary decrement between
transverse and longitudinal degrees of freedom. This cre-
ates a problem of minimization of chromatic aberration ef-
fect by matching the low-beta focus in slowing medium
with focusing structure of rather long-wave accelerator
units.

2 TRANSFER OF COOLING RATE TO
LONGITUDINAL DIRECTION

Bent current-carrying lithium-beryllium rods join in itself
the functions of efficient focus and of degrader, necessary
for transverse ionization cooling, and create a dispersion
function, providing the longitudinal cooling – when corre-
lated with transverse gradient of electron density in slowing
matter – on account of redistribution of cooling decrement
between transverse and longitudinal directions. The por-
tion of decrement, transferred to longitudinal direction, is
defined as∆δ = δ0ψ

(
η + 1

R

)
. Hereδ0 is transverse decre-

ment, equal to ratioξ/pv, with ξ standing for mean rate of

ionization loss of energy,ξ = −dE
dz ; ψ denotes dispersion

function, η = 1
ne

dne

dr - relative value of electron density
gradient, andR is the bend radius. Full expression for lon-
gitudinal decrement reads:

δ‖ = ξ′ + δ0ψ

(
η +

1
R

)
,

whereξ′ is a derivative of mean rate of ionization loss with
respect to particle energy. It represents the natural longitu-
dinal decrement. In energy region of logarithmic grow of
loss rate the value ofξ′ hardly achieves 7% of transverse
decrement, while belowpc ∼ 400 Mev, where it is nega-

tive , its absolute value| ξ′ |∼= 2
(

1
γ2 − 1

Li

)
(Li ∼ 25÷ 30

is the logarithmic factor in expression for mean rate of ion-
ization loss of energy) is growing fast with energy decrease
and becomes equal to∼ 0.9δ0 at momentum∼100 MeV/c.
Thus, the energy of cooling is defined by a magnitude of
productψη we can create.

We consider two ways of creation of electron density
gradient in current- carrying rods. In first (see fig. 1 a)
the rod is composed of wedge-shape parts of two different
metals [1]. One is the lithium, and another - the beryllium
alloy with the same electrical conductivity as lithium. The
relative gradient of electron density in such rod is found
as: η ∼= 1

r0

ne,Be
−ne,Li

ne,Be
+ne,Li

, wherer0 is a rod radius. Disper-

sion function in bent rod is equal toψ = r0
H0
Hm

, where
H0 is bending field andHm - the focusing one, defined as
Hm = r0

dH
dr . By equal each other magnitudes of above

fields the value ofψ is simply equal tor0 , and product
ηψ – to ηψ = ne,Be

−ne,Li

ne,Be
+ne,Li

, that is to∼ 0.56. The ratio

Figure 1: Two geometries of bent lithium-beryllium
current-carrying rod.

ψ/R = r0/R adds to this a value of the order of 0.1, so
the longitudinal decrement is equal toδ‖ ∼= ξ′ + 0.66δ0.
This provides the positive value of longitudinal decrement
by beam momentum above 140 Mev/c.

Another way of creation of electron density gradient
consists in insertion of thin beryllium wedges between
sections of lithium carrent-carrying rods (see fig. 1 b).
Wedge length∆l (by the bottom) can not exceed∼ 0.2 of
lithium section lengthl without sufficient violation of fo-
cusing structure, which restricts an effectiveη by a value:
ηeff

∼= 1
r0

ne,Be
∆l

2ne,Li
l+ne,Be

∆l ≤ 0.26. This is sufficiently less
the value got in first case, however this reduction can be
compensated by means of enlarging of dispersion function
magnitude at wedges. This is achieved by a special config-
uration of bent rod, providing the parallel shift of a beam
between the wedges. With phase advance of free particle
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oscillations between two subsequent wedges equal to 220◦

-240◦, the absolute value ofψ at wedges is increased by
3 -3.5 times. This permits to get the productψη equal to
∼ 0.8 ÷ 0.9.

3 ULTIMATE VALUE OF NORMALIZED
6-EMITTANCE

An optimum relation between the transverse and longitu-
dinal decrements by cooling in current-carrying rods with
restricted value of maximum field at the rod surface, de-
fines the longitudinal decrement as equal to one fourth of
the sum decrement of ionization coolingδΣ = 2δ0 + ξ′, i.e.
δ(opt)
‖ = δ0/2 + ξ′/4.
In the wedge-rod scheme the optimum value ofδ‖ is

achieved with∆l/l ∼= 0.13 by cooling at 200 MeV/c mo-
mentum.

Dependence of an ultimate value of normalized 6-
dimensional emittance on energy is defined by a factor

∼ (γ2+1)
√

γ

β2 [2]. It is minimum atpc ∼= 100MeV/c, where

the value ofε(6)eq,N is estimated as:

ε
(6)
ult,N ∼ ·10−4 1

H2
m

√
λ

2πeε
cm3

in dependence on maximum focusing fieldHm , acceler-
ation rateeε, and wave length of accelerating voltageλ.
With Hm = 10T, λ = 10 cm, andeεeff ∼= 1.2 MeV/cm
one gets:ε(6)ult,N ∼ 1.2 · 10−6 cm3 .

At particle momentum200MeV/c and with more mod-
erate accelerator parameters –λ ∼= 30cm and eεeff ∼=
0.5MeV/cm – this value is:ε(6)ult,N ∼ 4.0 · 10−6 cm3 .

Cooling of∼ 200 MeV/c momentum muons in a system,
composed of bent lithium rods and beryllium wedges of
0.13 relative length, is illustrated in figure 2.

Curves 1 and 2 show, accordingly, the radial and axial
normalized emittances in MeV/c cm and 3 – the longitudi-
nal emittance in MeV cm versus the number of degrader-
accelerator cells. Thin lines present the numerical solution
with the use of kinetic equation, thick ones – the result of
simulation with Moliere formulae, used for the Coulomb
scattering angle distribution, and Vavilov formulae – for
straggling of energy loss.

Dashed line shows the ratioRt of rod radius to maxi-
mum r.m.s. particle coordinate, got by the numerical solu-
tion, while dashed squares at figure bottom show the par-
ticles (from 100 initial), found lost by simulation. Both
dipole and maximum focusing fields are taken equal to10T,
acceleration rate – to0.5 MeV/cm, andλ – to 30 cm. The
initial r.m.s. momentum spread is±4.5% and longitudinal
coordinate –±1cm.

The rod radius is gradually reduced with beam cooling
from∼ 8 mm down to∼ 3.5 mm, which provides with al-
most constant value ofRt, equal to∼ 2.5(r0 ∼= 3.5σ⊥).
The rod length is also decreased in proportionality with√
r0 to keep constant valueνϕ0 = 2

3π. The energy loss

Figure 2: Cooling of 200 MeV/c muons.

per cell is about 30 MeV in the beginning and about 20
MeV in the end.

The final radial emittance is more than two times larger
than the axial one, which proves, that more than half of ra-
dial decrement is transferred to the longitudinal direction.
The initial longitudinal emittance is taken close to the equi-
librium value and thus only slightly decreases with cooling.

The magnitude of normalized 6-dimensional equilibrium
emittance, got in the end of 40-cell cooling, is equal to∼
4.5 ·10−6cm3 in good accordance with analytic estimation.

4 COMPENSATION OF LINEAR
CHROMATICITY BY ACCELERATION

To get the defined above ultimately small normalized 6-
emittance of muon beam there has to be solved a problem
of minimization of chromaticity of focusing by accelera-
tion between the degrading sections being the necessary
part of ionization cooling scenario.

Such minimization is achieved by compensation of lin-
ear component of chromaticity, as it is considered below.

The transverse mean square beam characteristics by ac-
celeration are defined with equations:

∂〈r2〉
∂y

− 2
p〈rθ〉
eε0

= 0

∂p〈rθ〉
∂y

− p2〈θ2〉
eε0

+
keff p

2〈r2〉
eε0

= 0 (1)
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∂p2〈θ2〉
∂y

+ 2
keffp

3〈rθ〉
eε0

= 0.

Herer andθ are 2-vectors of transverse coordinate and an-
gle, accordingly,y stands for particle rapidityy = lnE+p

M ,
E andp are energy and momentum, and velocity of light is
put equal to 1;eε0 denotes the acceleration rate, andkeff –
the focusing strength, defined by means of derivative of an-
gle with respect to longitudinal coordinate askeff r = −dθ

dz .
Let us consider the focusing strength to be of quadratic

dependence on particle momentum,keff ∝ 1/p2, and about
uniformly distributed through the length of acceleration.
Such a focusing can be really created with the use of con-
tinuous train of short quadrupoles1 with accelerator, placed
in their aperture (see fig. 3). The focal distance of short FD
pairf is about equal to 1

k2l3 with k = edH
dr /pc andl being

a length of quadrupole unit. The effective value ofdθ
dz is

thus equal to∼ r
2lf , andkeff

∼= k2l2/2.

Figure 3: Scheme of beam focus between degraders.

Solution of system (1) reads:

〈r2〉 = 〈r2
0
〉 cos2 ω(y − y0) +

〈θ2
0
〉p2

0

κ
sin2 ω(y − y0)

〈rθ〉p =
〈θ2

0
〉p2

0
− κ〈r2

0
〉

2
√
κ

sin 2ω(y − y0) (2)

〈θ2〉p2 = 〈θ2
0
〉p2

0
cos2 ω(y − y0) + κ〈r2

0
〉 sin2 ω(y − y0)

with κ = keff p
2, andω =

√
κ

eε0
. Here we neglected the value

of 〈r0θ0〉, which is small in current-carrying rod.
To get a small betatron function at entrance to next

lithium rod the phase advanceω(y − y0) is to be chosen
equal toπ (or 2π and so on), which defines the necessary
value ofκ by fixed acceleration rate. On acceleration from
∼170 up to 200 MeV/c (y − y0

∼= 0.14) with phase ad-
vance equalπ and acceleration rateeε0 to ∼ 0.5 MeV/cm,
the value ofκ is∼ 126 MeV2/c2 cm2.

The magnitudes〈r2〉 and〈θ2〉 at accelerator exit in lin-
ear approach do not depend on particle energy deviation.
Aberrational effect manifests itself only through〈rθ〉. It is
proportional to a difference〈θ2

0
〉p2

0
− κ〈r2

0
〉, which is not

1Technologically preferable looks the helical quadrupole tract

small as far asκ is much less than corresponding magni-
tude in a rod:κ << p2

0
/β2

0
. In result, the value ofδ〈rθ〉 at

accelerator exit is rather large. In following lithium rod it
gives rise to oscillating addition to betatron function:

δβ0
∼= − δE

eε0

p0

p

(
1 − p0

p

)
sin 2

√
k0z

with amplitude, being of the order of or even exceeding the
value ofβ0 by δp/p equal to several percents.

This makes evident the necessity of matching lens to be
inserted between the lithium rod and accelerator. Such a
lens, making theπ/2 transformation with focal distance

f0
∼=

√
β0p0√

κ
, will provide zero value of〈rθ〉 by accel-

eration. Simultaneously a lens with focal distancef ∼=√
β0p

√
p

p0κ , put after accelerator, will match the beam

with focus in next rod.
Thus the linear chromaticity of focusing by acceleration

is compensated. This, however, does not mean the compen-
sation of chromatic aberration, but the trajectory of aberra-
tional displacement of particle coincides in lenear approach
with transverse phase trajectory.

The matching lenses also make contribution to the aber-
rational effect. With account for this made, the necessary
value off0 is defined as:

f0
∼=

√
p0

p

{
β2

0
p0(p− p0)
νeε0E

/ [
E0

E
+

(
p0

p

)7/4
]}1/3

,

whereν stands for a power of matching lens focal distance
dependence on particle momentum:f0 ∝ pν . The value of

f is found asf = f0

(
p
p0

)3/4

.

By p0 = 170 MeV/c andp = 200 MeV/c, eε0 = 0.5
MeV/cm,β0 = 2 cm andν = 2 the magnitudes off0 and
f are equal to 4.3 and 5.4 cm, accordingly.

The lens with such a focal distance for particles of∼ 200
MeV/c momentum is a problem. It can not be the lithium
one because with beta-function of beam, exceeding 10 cm,
the multiple scattering in lithium will result in beam emit-
tance increase by∼ 10% of equilibrium value in each lens.

The only solution seems to be a short solenoidal lens
with very high – up to 25 T – pulsed magnetic field.

The use of ”linear” systems (k
eff

∝ 1/p) for beam fo-
cusing by acceleration would evidently give an advantage
in aberrational effect as compared to the ”quadratic” ones.
As such a ”linear”systems the plasma lenses can be consid-
ered. Having the focal distance linearly dependent on parti-
cle momentum, such lenses by rather moderate parameters
would provide an efficient focusing with minimum chro-
matic aberration.
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