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Abstract
This paper deals with the motion of charged particles in a
magnetic bottle.
  The realization entails an assembly of current loops,
which in the present treatment is simplified to three
components: a solenoid and two dipoles. For a given
configuration of the magnetic field and the initial position
and momentum of the particles, it has been found that the
particles can be stored in a racetrack-like fashion, looping
around at near constant radius, somewhat toe-ing in upon
reflection  from the repeller at the end of the bottle.

1   EQUATION OF MOTION

The disposition of the magnetic components is shown in
Figure 1. We identify 4 parameters which determine the
magnetic field, namely the distance a of the dipoles to the
median plane, the field B of the solenoid and the moments
of the upper dipole b’ and the lower dipole b”.

Figure 1: Magnetic Components

  A relativistic Hamiltonian  which is θ-independent
contains only one tangential component A of the magnetic
potential.
H=[Pr

2*c2+{Pθ/r-e*A} 2*c2+Pz

2*c2+m2*c4]1/2                   (1)
The contribution to A of a dipole in the origin will be
Adipole=(µ/(4*π))*m×∇(1/r)spherical   (2)
where m is located on  the z-axis. We obtain in cylindrical
co-ordinates:
Adipole=(µ* |m|/(4*π))*r/(r 2+z2)3/2  =b*r/(r2+z2)3/2                         (3)
 b=µ* |m|/(4*π)   (4)
The contribution to A of a solenoid is  Asol=B*r/2        (5)
The contribution to A of the system shown in Fig.1:
A=B*r/2+b’*r/[r 2+(z-a)2]3/2+b”*r/[r 2+(z+a)2]3/2  (6)
Br=-δA/δz=3*b’*r*(z-a)/[r 2+(z-a)2]5/2+           
+3*b”*r*(z+a)/[r 2+(z+a)2]5/2                                 (7)
δA/δr=B/2+b’*[(z-a)2-2*r2]/[r 2+(z -a)2]5/2

+b”*[(z+a)2-2*r2]/[r 2+(z+a)2]5/2                                                (8)
Bz=A/r+δA/δr=B+b’*[2*(z-a)2-r2]/[r 2+(z-a)2]5/2

+b”*[2*(z+a)2-r2]/[r 2+(z+a)2]5/2                  (9)

dr/dt=δH/δPr=Pr*c
2/H                     (10)

dθ/dt=δdH/δPθ={Pθ/r-e*A}*c 2*r -1/H              (11)
dz/dt=δH/δz=Pz*c2/H                        (12)
dPr/dt=δH/δr={Pθ/r-*A}*{P θ/r+e*r*(δA/δr)}*c 2*r 1/H
                                                                                       (13)
dPθ/dt=-δH/δθ=0                                  (14)
dPz/dt=-δH/δz={Pθ/r-e*A}*{e*r*( δA/δz)}*c 2*r -1/H      (15)
 substituting (11) in (13) and (15):
dPr/dt=(dθ/dt)*{P θ/r+e*r*(δA/δr)}             (13a)
dPz/dt=(dθ/dt)*{e*r*( δA/δz)}                                     (15a)

2  MEDIAN PLANE

2.1 Parallel Dipoles (b’=b”)
In the median plane, z=0, Br=0, so that the symmetry is:
Br(r,z)=-Br(r,-z) and Bz(r,z)=Bz(r,-z)              (16)
We will track charged particles which start off the median
plane, perpendicular to it and at a given momentum and
look for conditions so that the particle is reflected and
crosses the median plane again perpendicular to it. In this
case the crossing occurs at the same initial radius and
momentum but not necessarily at the same θ. This particle
continues to be reflected and upon every reflection there
will be a constant phase advance ∆θ, so that the particle
seems to meander in space.
   If the phase advance per half cycle can be written like
∆θ=k*π/n, k and n integer and k/n irreducible, the particle
track closes upon itself, provided k=odd, after 2*n half-
cycles. If k=even, the track collides upon itself after n
half-cycles. Thus for a given configuration (a,b’,b”,B), we
may be able to establish the relation (r,∆θ,pt), where pt is
the total momentum.
  The method of calculating the system of first order
differential equations, eq.(10) through (15) is that of
Runge-Kutta, or its variants. We resort to this method
because it is highly unlikely that an analytical solution can
be found for the above magnetic field profile -and- if
found, highly unlikely that such field can be realized. In
fact, we look for an existence proof by trial and error, and
consider a successful outcome for pt a resonance.

2.2  Anti-parallel dipoles (b’=-b”)

For B=0: Br(r,z)=Br(r,-z) and Bz(r,z)=-Bz(r,-z)         (17)
Applying the method of 3.1, a resonance shows that the
phase advance of the second half cycle changes sign, so
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that the particle follows a closed loop, having the shape of
a race track in elongated structures, (r<<a).

3    SCALING ALGORITHMS

The solution of a system of first order differential
equations, resulting from the expression for H, eq.(1), via
the Runge-Kutta method is quite  laborious. The following
scaling algorithms may alleviate the work.
3.1  Mass-less Particles  In the absence of an electric
potential, the momentum  of the particle determines its
path: the mass is irrelevant. Thus one might as well
calculate trajectories of mass-less particles having an
electronic charge. Such fictitious particles travel with the
speed of light, facilitating comparison.
3.2.Momentum  Particles with different momentum
would have identical trajectories if one scales b’,b” and B,
but not a, proportionally to the momentum ratio.
3.3  Linear scaling λ of the device would scale a given
trajectory to the extent  that at each corresponding point
the radius of curvature is increased by a factor λ. The
solenoid does not scale, λ0. The dipole field scales as λ-3,
hence we need to scale b’ and b” by λ3 to assure the same
magnetic field in corresponding points. It follows that one
must scale the momentum by a factor λ1 to agree with the
larger radius of curvature.
3.4 Multiple charged particles would follow the same
trajectory if b’,b” and B are reduced in the same ratio.
3.5 Phase Advance. All of the above does not affect
the phase advance nor any spatial angle in comparable
points of either trajectory.
3.6 Scenario  Clearly, the above mentioned scenarios
may be applied one after the other, ad infinitum.

4   SOME CONSIDERATIONS

A solenoidal magnetic field may modulate the phase
advance considerably, but, since the effect is
predominantly in the region where the particle approaches
its apogee, an assembly of circular current loops will have
the same outcome. In fact, a concentration of current
loops , situated near z=±a may simulate the above
mentioned dipoles, but, computationally, the magnetic
potential equation  (6) is easier to use.
  The apogee of a trajectory is characterized by Pz=0, but a
resonance requires in addition Pr=0.
With respect to this turning point, the co-ordinates r and z
are symmetric and the co-ordinates Pr, Pz and θ are anti-
symmetric, as will be shown in subsequent Figures.
  For a given set of parameters (a,b’,b”,B), resonances turn
out to be multi-valued. The simplest pattern seems to be
related to the highest momentum and highest penetration
into the mirror and may be most useful.

   The total momentum vs. the radius follows more or less
an inverse square power of r; corrections thereto seem to
agree with:      ptotal ∝ (r-2+a-2), (r<a)                    (18)
  For each iteration , the co-ordinates are fed back into (1),
resulting in a chart dH/H vs. time. The area above and
below the abscissa seems to cancel out fairly well upon
crossing the median plane. Fig.2c shows an example.
A Variable Iteration Step is applied, based on the radius
of curvature R and the slope α of each of the co-ordinates:
See Fig.2b.The Iteration Step ∝ 1/Σ(1/(R*cosα))       (19)
   A race track may have adjacent branches moving in
opposite direction. This would suggest to fill the bottle
with one or more monochromatic particle beams until all
branches are filled. If the moving charges remain trapped
for measurable and useful time spans, a sudden electro –
magnetic disturbance could merge adjacent branches,
opening a new way to measure cross sections or reaction
rates, either nuclear or chemical.
   In this respect collisions occur with equal and opposing
momentum in the laboratory frame, independent of the
mass of the participating species.
   The self-magnetic field of multi-prong beams evenly
distributed in a circular shell tend to be less than
distributions concentrated in only a few branches.
   A small value of B of the solenoid does modulate the
kinematics at the apogee appreciable, but the main
function of B is to reduce the spatial divergence of the
multi-prong particle beams.

5    NUMERICAL RESULTS

The parameters for a trajectory may be written in two
arrays:  i)  the system parameters (a,b’,b”,B,e,m,c,H)
and      ii)  the initial values  (t,r,θ,z,Pr,P~, Pz)initial

We note that P~=(Pθ/r-e*A)= the tangential momentum .
   In view of the scaling algorithms, it is sufficient to treat
only cases where m=0 and e is a single electronic charge.
Table 1. Shows the dimension of the system parameters:

 Table 1:  System Parameters

    Distance from Dipoles to Median Plane  (m)             a
    Upper Dipole Strength  (Tesla*meter3)                     b’
    Lower Dipole Strength  (Tesla*meter3)                     b”
    Solenoid Strength  (Tesla)                                         B
    Light Velocity  (m/s)                                                 c
    Total Energy  (eV)                                                    H

   The calculation is best done with dimensionless values.
In this respect, the initial array  transforms as
(t,r,θ,z,Pr,P~, Pz)initial=(T,u,v,w,U,V~,W)initial

The relation between corresponding values is shown in
Table 2.
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Table 2: Conversion Ratio

T=t*c/a         u=r/a  v=θ/(2*π)         w=z/a
U=c*Pθ/H     V~=c*P~/H     W=c*Pz/H      V=c*Pθ/(a*H)

Figure 2 is a 2-Prong Race Track. (b =-b ), u(0)=0.02
Figure 2a: Co-ordinates vs. Time.
Figure 2b: Shows (dT) vs. Time.

Fig.2c: Shows (dH/H) vs. T, and ƒ(dH/H)dT vs.T
(a,b,b ,B,H)=(5,5E-6,-b ,0,43720).

This case is scaleable for electron cooling of, say, 9 GeV/c
antiprotons that may have a cooling length of 2*a=30 m
and Helectron=4.92 MeV
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Figure 3 is a Closed 4-Prong Loop u(0)=0.0355
Fig.3a shows (u,v,w,U,V⊥,W) vs. T. Fig.3b shows  (u,w) vs. v,

(a,b,b ,B,H)=(0.2,5E-6,b,0,98000).

Figure 4 is a Multi-Valued  Resonance.

Fig.4a shows  (u,v,w) vs. T and Fig.4b shows  (u,w) vs. v
u(0) = 0.5. (a,b.b ,B,H) = (0.2,5.2E-5,b,1E-3,254558)

                     6  DISCUSSION

No attempt has been made in this paper to devise means to
focus stored particle beams. The author conjectures that
for short enough time spans, some sort of confinement is
possible. For instance the study of cross sections and
reaction rates of nuclear or chemical species are head-on,
of equal momentum in the laboratory frame, do not need
real time and feature independence of the mass of either
species.
    But in cases of production, such as fuel or chemistry or
electron cooling, focusing the beams is of importance. The
possibility of organizing the storage in circular shells
and/or in several concentric shells, where adjacent beams
move in opposition, may alleviate the issue of magnetic
pressure or the issue of efficiency or both.

The injection of charged particle beams seems quite
feasible: the beams will be bunched in any case and the
switching on or off is current practice.
   Charge neutrality is again a big issue: the pulsed nature
of the device may help to cope with this feature.

F ig u r e 3 a C o o r d in a t e s  v s .
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