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Abstract

In this paper, the longitudinal coupling impedance of a
toroidal beam tube with circular cross section is derived
in the frequency domain using the toroidal coordinate
system. Exact, although coupled, differential equations
for the azimuthal field components are obtained. An
approximate solution, valid in the limit of small curvature,
is then derived.  Assuming extreme relativistic energies
and a beam tube with perfectly conducting walls, one
finds a closed-form expression for the purely reactive
coupling impedance which at low mode numbers is
dependent on the tube geometry but which at very large
mode numbers approaches the free space impedance.

1 INTRODUCTION

In contrast to the incoherent synchrotron radiation, the
coherent radiation has been so far of limited practical
importance but could become important for machines
with very short bunches. In any case, the study of the
interaction of a circular beam with its environment, here
described  by the coupling impedance, is a topic of
considerable theoretical interest and has been addressed
by many accelerator physicists, most recently in the paper
by Murphy et al[1] or in the book by Zotter and Kheifets,[2]

where references to many relevant studies can be found.
The complete expression for the coupling impedance due
to coherent synchrotron radiation in  free space is found
in ref. 1; from this follow the Bonch-Osmolovski/Faltens/
Laslett asymptotic approximation valid at mode numbers
n << nc as well as the asymptotic approximation valid
when n >> nc, the latter given by

with the critical mode number nc = (3/2) γ3 and the free
space impedance Z0 = µ0 c (= 1 in natural units used in
this paper).  Note that at very large n, the real part
decreases exponentially and the free space coupling
impedance becomes predominately inductive.

In accelerators/colliders the beam is enclosed in
a beam tube of dimensions small compared to the bending
radius. The coherent radiation by beam bunches of finite
length has a spectrum mainly with wavelengths longer
than the dimensions of the bunch and thus comparable to

the transverse dimensions of the beam tube. Hence the
presence of the walls, in this paper assumed perfectly
conducting, changes the field configuration and leads to
radiation shielding. The shielding effect has been
analyzed for the simple geometries of a beam centered
between parallel plates[1], [2] and in a toroidal tube with
rectangular[3] or circular cross section.[4]  The results show
that the shielding effect is most pronounced at low mode
numbers for which asymptotic approximations exist in
closed form. The situation at large mode numbers is less
clear, in particular with respect to the reactive part, since
no closed form approximation seems to be known.
Attempting to fill this gap, in this paper the general
solution for a beam in a toroidal beam tube with circular
cross section is derived using a perturbation method valid
in the case of small curbature. From this solution, valid at
all mode numbers, an approximate expression in closed
form for the case of n >>γR/b is derived, which shows that
the free space impedance is approached. Although the
analysis is based on a specific beam tube the solution, the
result is believed to be representative for any fully
shielded geometry.

2 MAXWELL’S EQUATIONS IN
TOROIDAL COORDINATES

The study of a toroidal beam tube with circular cross
section suggests the use of the toroidal coordinate system
(u, p, θ) even though the vector wave equation is not
separable.[5]  Toroidal coordinates are defined in terms of
circular cylinder coordinates (ρ, θ, z) by

and have the metric coefficients

where R is the curvature radius of the beam orbit. The
minus sign for hu is required to make Eu point in the same
direction as Eρ when p = 0.

Assuming a time harmonic current density, iθ,
one  can  write  the  field vectors as  F = (Fu , Fp , jFθ) exp
 j(nθ-ωt) with ω = vn/R.  Maxwell’s equations now take
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the form

In the current free region, this set of 6 equations
can be reduced to two coupled equations by introducing
complex transverse fields, ET = Eu + iEp and HT = Hu +
iHp and the differential operators

leading to

and

together with the expressions for the transverse
components, of which only Hp is needed:

3 PERTURBATIVE SOLUTION

For small curvature, i.e. beam tube radius divided by
beam orbit radius, b/R << 1, one has u ∪ ∞, and thus
coshu ∪ sinhu ∪ exp(u)/2, resulting in gθ ∪ 1 which
implies almost decoupled equations for the azimuthal
components. The weak coupling can be conveniently
handled by a perturbation method, in which the metric
coefficients are asymptotically approximated by

with η = 1 the perturbation parameter. In order to simplify
the solution, a change of the radial coordinate is indicated
from u to x = 2 (n/γ )e–u with the filamentary beam at x =
0. The beam tube radius and the wall boundary locus can
now be approximated by xb ≈ (n/γ) (b/R) since the
resulting off-center beam position is a second order effect.

The differential operator becomes in the new coordinate
system

The solution takes a simple and transparent form
by restricting the present study to the representative case
of a filamentary beam thereby neglecting the space charge
effect which decreases with γ-2. The azimuthal current
density for a current I = 2π is given by iθ = δ (x – 0) (the
time harmonic factor is suppressed) and one can write the
associated “TM01” - like perturbative solution as follows

Note that the longitudinal coupling impedance is
determined from Eθ20 only and the Eθ2p term is not
required.

Zeroth order solution.  In zeroth order, the fields
due to a  filamentary  beam are  those of  the  TM01 mode
in  a  straight  beam  tube, with  the azimuthal  component
a solution of L0(E θ0) = 0 and the boundary condition
Eθ0(xb) = 0 where Lm represents the modified Bessel
function differential equation,

The following expressions are required in finding the first
order solution,

with the shorthand notation I0b = I0(xb) and K0b = K0(xb).

First Order Solution.  The first order field com-
ponents are obtained from Bessel’s equation with forcing
term,

where  the  prime denotes differentiation  with  respect to
the argument. Together with the boundary conditions
Eθ1(xb) = 0 and H′θ1 (xb) = 0, one finds after some
manipulations
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The transverse field component required for the second
order solution is found from

Second order solution.  The second order solu-
tion is obtained from the Bessel function differential
equation with forcing term,

together with the boundary condition Eθ20 (xb) = 0. The
solution is somewhat lengthy, but can readily be handled
with the aid of a computer program such as MACSYMA.
Only the second order azimuthal electric field component
contributes to the curbature induced coupling impedance;
its expression is

4 THE COUPLING IMPEDANCE

The curvature-induced coupling impedance is obtained
from the azimuthal electric field component by the
integral

With the use in this paper of the particular current
strength, I = 2π, the general expression for the couping
impedance becomes simply Zn = - j Eθ20 (0). Numerical
results can be readily obtained for all mode numbers,
provided that double-precision Bessel function routines
are used. (As example, results for a RHIC-like machine
with γ =100 and b/R = 2×10-4 are shown in Fig. 1.)

Approximate expressions valid at very low and
very large mode numbers follow from the general
expression:

thereby providing the mathematical prove, that at
sufficiently  large mode numbers the coupling impedance
of a circular machine approaches the free space value, a
fact previously suggested, but only proven for a circular
beam between parallel plates. Although the present result
was derived for a beam tube with circular cross section, it
is expected to be valid for any beam tube geometry.

Fig. 1:  Exact results and asymptotic approximation for
curvature-induced coupling impedance.
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