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ON THE SYMMETRY OF THE IMPEDANCE *

S. Heifets!,, B Zotter, CERN

Abstract The reciprocity can be deduced directly from Maxwell

The reciprocity theorem is used to prove the symmetr?quaﬂons[z] which give the following identity:

of the longitudinal impedance of an accelerating structure div i E(r.r Hir _E H "
with respect to exchange of the coordinates of the leading Wi B(r,re) x Hr,r) (r,m) x H{r,r)} @)

and trailing particles. Zolj(r.r) E(r.r) — j(r,r) E(r,r4)] (5)

Cross here means vector product.
1 INTRODUCTION Integral taken over the left-hand-side over the volume of

The longitudinal impedancg(w, r;, r;) is a Fourier com- a beam pipe can be transformed in the surface integral. On
ponent of the longitudinal wake field generated by a leadhe metallic walls of the beam pipe, the tangential compo-
ing particle with transverse offset and experienced by the nents of electric fields are related to the tangential compo-
trailing particle with offsetr, lagging behind the leading nents of the magnetic fields = (H x n, wheren is unit
particle at the distance vector perpendicular to the walf, = (1 — ¢)(wd/2¢) is
Current of a relativistic particle moving it z-direction  surface impedance, an@—w) = —id(w) is skin depth.
with transverse offset, = (z;,1;) has only longitudinal The surface integral over beam pipe with ideal conduc-
component=(r, ry, t) = +ed(r — r;)d(s F ct). tivity (¢ — 0) is zero.
We use Fourier harmonics defined agt) = For a surface with finite conductivity, the surface integral
[ j(w)e~***dw/2m. Fourier harmonics of the current are

) = 2o — w)dly — e () J i = [asncm) @

The leading particle moving in an accelerator struc- _ C/ AS(H; x n)(H, x n) @)
ture and having charge may excite in the structure the

longitudinal electric fieldE,(r,s,r;). The longitudinal g symmetric with respect to indexed. Hence, the surface

impedance is defined as integral integral over the left-hand-side of Eq. (4) is zero for the
1 ) finite conductivity as well.
ZE (w,remy) = :Eg/dsEf(Tt,S-ﬂ)ews/cx %) Consider now the surface integrals over the surfaces

closing the beam pipe volume at— =+oc in the plane
for the beam propagating iz directions, respectively. perpendicular to the-axis. In the case of finite conduc-
We want to proof that impedance is symmetric in respedivity of the walls, the integrals are zero because radiated
with exchange of the transverse coordinates of the leaditfiglds are absorbed in the walls. For ideal walls the integral
and trailing particles,

ZH(w,r,m1) = Z7T (w1, 74). (3) /oo dS{E(r,r) x H(r,ri) = E(r.m) x H(r,ro)} - (8)

For a particular case of the resistive wall impedance a§ the difference of two integrals
a straight pipe, the symmetry was noticed before[1] from
the explicit form of the Iongit.udinal impedance. We try to / dS[E, (r.r)H, (r.re) — Ey(r.r ) Hy(r.r)]  (9)
proof the theorem for an arbitrary structure but with mirror 0o
symmetry in respect with — —z. The proof is based on
the reciprocity theorem and symmetry of EM fields gener- — / dS[E,(r,m)H,(r,rs) — Ey(r,re)H, (r,77)]. (10)
ated by particles in a symmetric structure. oo
We can assume that the beam pipes at infinity are straight

2 SYMMETRY OF THE LONGITUDINAL pipes and express transverse components of the fields in the

IMPEDANCE TM waves in terms of the longitudinal components:
The reciprocity theorem relates EM fieldsz(g, ), B, = g OB, . _ i_anZ‘ (11)
H(r,rs)) and E(r, 1), H(r,r;)) driven by two arbitrary k2 0z’ Y K2 Oy’
currentsj(r, ;) andj(r, r;) correspondingly. . it OF. o it OF. b
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Itis easy to see that both integrals are zero. Cancellatidxpression in the right-hand-side after change of the sign
of the surface integrals for the TE waves can be seen in tloé integrands coincide withZ+, See Eq. (2). Hence, for a

same way. mirror symmetric structure, we get
Interference between TM and TE modes depends on po-
sition of the flanges écause, for a given frequency, these Z7(rrew) = Z1 (r,re w), (24)

modes have different propagating constants. Therefore, the ) _
interference term can be put to zero by proper choice of tfd1d Ed. (11) gives finally

flanges location. ¥ e
Hence, integration of Eq. (4) gives 27 (rernw) = 27 (re e w). (25)

The symmetry means that beam-pipe radixatre equal.
/dV[j(T, s, 1) E(r,s,m1) — j(r,s,m)E(r,s.r)] = 0.  The self-field of the beam has only transverse components
(13) and does not contribute to the right-hand side.

This is correct for arbitrary currents. For the currents 1his conclude the proof.
j(r,r;) propagating irg-direction, andj(r, r+, s) in —z di-
rection;(r, s,r;) = —d(r — r¢)e~'¢/¢, Eq. (9) gives 2.1 References
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ZY(reriw) = Z 7 (1, resw). (15)

Now we have to relate impedanc8s andZ .
To do this, let us compare solutiods™(r, s, ry) of the
wave equation driven by currents

JE(rr0) = £0(r = ro)eieele, (16)

with the same transverse offsets but moving in opposite
direction along thez-axis. The boundary coiittbns on

the beam pipe are the same in both cases but two so-
lutions E*(r, s,79) have different asymptotics. Far
components, for example,

ET(s) = D(w)e'™?*, s — oo, a7

ET(s5) = A(w)e!%?® + B(w)e ~*, s5s— —o0 (18)

and
E~(s) = —[A(w)e™* 4+ B(w)e'**], s—= 00 (19)

E~(s) = —D(w)e™ "%, s — —o0. (20)

Hence, wave equations, boundary cibioths and asymp-
totics are the same for the fields*(s) and E~(—s).
Therefore z-components are related:

E_(’I', 8, 7.0) =—-E* ('I', =5, 1’.0)' (21)
Using this result and the definition 4f~ Eq. (2), we obtain
Z7 (11,1, w) = — / dsES (1, 8,1)e /<, (22)
or

Z7(r,re,w) = /dsEI(rl,—s,rt)e"’”/“. (23)
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