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Abstract

The reciprocity theorem is used to prove the symmetry
of the longitudinal impedance of an accelerating structure
with respect to exchange of the coordinates of the leading
and trailing particles.

1 INTRODUCTION

The longitudinal impedanceZ(!; rt; rl) is a Fourier com-
ponent of the longitudinal wake field generated by a lead-
ing particle with transverse offsetrl and experienced by the
trailing particle with offsetrt lagging behind the leading
particle at the distances.

Current of a relativistic particle moving in�z-direction
with transverse offsetrl = (xl; yl) has only longitudinal
componentj�(r; rt; t) = �e�(r � rl)�(s� ct).

We use Fourier harmonics defined asj(t) =R
j(!)e�i!td!=2�. Fourier harmonics of the current are

j�(r; rl) = ��(x� xl)�(y � yl)e
�i!s=c: (1)

The leading particle moving in an accelerator struc-
ture and having chargee may excite in the structure the
longitudinal electric fieldE!(r; s; rl). The longitudinal
impedance is defined as integral

Z�(!; rt; rl) = �
1

e

Z
dsE�! (rt; s; rl)e

�i!s=c; (2)

for the beam propagating in�z directions, respectively.
We want to proof that impedance is symmetric in respect

with exchange of the transverse coordinates of the leading
and trailing particles,

Z+(!; rt; rl) = Z+(!; rl; rt): (3)

For a particular case of the resistive wall impedance of
a straight pipe, the symmetry was noticed before[1] from
the explicit form of the longitudinal impedance. We try to
proof the theorem for an arbitrary structure but with mirror
symmetry in respect withz ! �z. The proof is based on
the reciprocity theorem and symmetry of EM fields gener-
ated by particles in a symmetric structure.

2 SYMMETRY OF THE LONGITUDINAL
IMPEDANCE

The reciprocity theorem relates EM fields (E(r; rt),
H(r; rt)) and (E(r; rl), H(r; rl)) driven by two arbitrary
currentsj(r; rt) andj(r; rl) correspondingly.
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The reciprocity can be deduced directly from Maxwell
equations[2] which give the following identity:

divfE(r; rt)�H(r; rl)� E(r; rl)�H(r; rt)g = (4)

Z0[j(r; rt)E(r; rl)� j(r; rl)E(r; rt)] (5)

Cross here means vector product.
Integral taken over the left-hand-side over the volume of

a beam pipe can be transformed in the surface integral. On
the metallic walls of the beam pipe, the tangential compo-
nents of electric fields are related to the tangential compo-
nents of the magnetic fieldsE = �H � n, wheren is unit
vector perpendicular to the wall,� = (1 � i)(!�=2c) is
surface impedance, and�(�!) = �i�(!) is skin depth.

The surface integral over beam pipe with ideal conduc-
tivity (� ! 0) is zero.

For a surface with finite conductivity, the surface integral
Z

dV div(Et �Hl) =

Z
dSn:(Et �Hl) (6)

= �

Z
dS(Ht � n)(Hl � n) (7)

is symmetric with respect to indexest; l. Hence, the surface
integral over the left-hand-side of Eq. (4) is zero for the
finite conductivity as well.

Consider now the surface integrals over the surfaces
closing the beam pipe volume ats ! �1 in the plane
perpendicular to thez-axis. In the case of finite conduc-
tivity of the walls, the integrals are zero because radiated
fields are absorbed in the walls. For ideal walls the integral
Z
1

dSfE(r; rt)�H(r; rl)�E(r; rl)�H(r; rt)g (8)

is the difference of two integrals
Z
1

dS[Ex(r; rl)Hy(r; rt)�Ex(r; rt)Hy(r; rl)] (9)

�

Z
1

dS[Ey(r; rl)Hx(r; rt)� Ey(r; rt)Hx(r; rl)]: (10)

We can assume that the beam pipes at infinity are straight
pipes and express transverse components of the fields in the
TM waves in terms of the longitudinal components:

Ex =
iq

�2
@Ez

@x
;Ey =

iq

�2
@Ez

@y
; (11)

Hx = �
ik

�2
@Ez

@y
;Hy =

ik

�2
@Ez

@x
: (12)

Hereq is propagating constant,(!=c)2 = q2 + �2.
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It is easy to see that both integrals are zero. Cancellation
of the surface integrals for the TE waves can be seen in the
same way.

Interference between TM and TE modes depends on po-
sition of the flanges because, for a given frequency, these
modes have different propagating constants. Therefore, the
interference term can be put to zero by proper choice of the
flanges location.

Hence, integration of Eq. (4) gives
Z

dV [j(r; s; rt)E(r; s; rl)� j(r; s; rl)E(r; s; rt)] = 0:

(13)
This is correct for arbitrary currents. For the currents
j(r; rl) propagating inz-direction, andj(r; rt; s) in�z di-
rectionj(r; s; rt) = ��(r � rt)e

�i!s=c , Eq. (9) gives

�

Z
dsE+

! (rt; s; rl)e
�i!s=c =

Z
dsE�! (rl; s; rt)e

i!s=c:

(14)
Expressions in this equation are the same as those in def-

inition of impedance. Hence,

Z+(rt; rl; !) = Z�(rl; rt; !): (15)

Now we have to relate impedancesZ� andZ+.
To do this, let us compare solutionsE�(r; s; r0) of the

wave equation driven by currents

j�(r; r0) = ��(r � r0)e
�i!s=c; (16)

with the same transverse offsets but moving in opposite
direction along thez-axis. The boundary conditions on
the beam pipe are the same in both cases but two so-
lutions E�(r; s; r0) have different asymptotics. Forz-
components, for example,

E+(s)! D(!)eiq!s; s!1; (17)

E+(s)! A(!)eiq!s +B(!)e�iq!s; s! �1 (18)

and

E�(s)! �[A(!)e�iq!s +B(!)eiq!s]; s!1 (19)

E�(s)! �D(!)e�iq!s; s! �1: (20)

Hence, wave equations, boundary conditions and asymp-
totics are the same for the fieldsE+(s) and E�(�s).
Therefore,z-components are related:

E�(r; s; r0) = �E
+(r;�s; r0): (21)

Using this result and the definition ofZ� Eq. (2), we obtain

Z�(rl; rt; !) = �

Z
dsE�! (rl; s; rt)e

i!s=c; (22)

or

Z�(rl; rt; !) =

Z
dsE+

! (rl;�s; rt)e
i!s=c: (23)

Expression in the right-hand-side after change of the sign
of integrands coincide withZ+, See Eq. (2). Hence, for a
mirror symmetric structure, we get

Z�(rl; rt; !) = Z+(rl; rt; !): (24)

and Eq. (11) gives finally

Z+(rt; rl; !) = Z+(rl; rt; !): (25)

The symmetry means that beam-pipe radii at1 are equal.
The self-field of the beam has only transverse components
and does not contribute to the right-hand side.

This conclude the proof.
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