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Abstract

The time evolution of the energy spread above the mi-
crowave instability threshold in a storage ring is described
by means of two coupled non linear differential equations.
The results are in agreement with a time domain simulation
code. The model equations are combined to those account-
ing for the storage ring Free Electron Laser dynamics, in
order to study the interplay between the FEL and the stor-
age ring instability dynamics.

1 INTRODUCTION

The microwave instability produces an increase of energy
spread and a consequent anomalous bunch lengthening,
and limits the performances of storage rings. It has been the
subject of several investigations [1, 2, 3, 4], and the prob-
lem has been studied by exploiting the linearized Vlasov
equation, which describes the time evolution of the single
bunch distribution function in the phase space. The thresh-
old of the instability depends on the wake fields and on
the current intensity. Above the threshold the linear the-
ory can not explain the time evolution of the distribution
function. The increase of the bunch phase space dimen-
sions may provide the conditions for a new equilibrium
configuration. It may happens, however, that the equilib-
rium is never reached, and the energy spread oscillates in
time with a pattern similar to relaxation type oscillations,
as shown in Fig. 1. Such a behavior is known as saw tooth
instability [4], and it occurs in storage rings characterized
by intense beam currents.

An appropriate analysis of the saw tooth instability, re-
quires the inclusion of non linear terms in the Vlasov equa-
tion. The problem has been afforded in ref. [5], where it
is shown that the time evolution of the distribution func-
tion may have different patterns, including relaxation type
oscillations.

In this paper, analyzing the results of appropriate nu-
merical simulations, we study the conditions for the on-
set, growth and relaxation of the saw tooth oscillations for
a pure inductive impedance. The analysis points out the
mechanisms responsible for the saw tooth behavior: the
growth of the instability is produced by non linear wakes,
it is counteracted by the Landau damping, and it is finally
damped by the radiation process. We describe these ef-
fects through some quantities averaged over the bunch dis-
tribution, giving a model employing two coupled non linear
equations which reproduce the relaxation oscillations of the
instability in a fairly satisfactory way. We employ numer-
ical simulations to show that a Free Electron Laser (FEL),
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Figure 1: Energy spread vs number of turns: a) simulations,
b) model equations.

used either as an amplifier or an oscillator, may be an effi-
cient tool to damp the saw tooth instability. The physical
interpretation of the simulation results has also suggested
the way to extend the model equations by including the ef-
fects of the FEL in the oscillator mode. This approach pro-
vides a clear picture of the FEL-storage ring mutual feed-
back, and clarifies the mechanism of the instability inhibi-
tion.

2 SAW TOOTH INSTABILITY

For the study of the saw tooth instability, we use a time
domain simulation code, which includes the effects of the
self induced wake fields. The simulations, using a pure
inductive impedance and employing3 � 10

5 macroparti-
cles, show a clear saw tooth behavior (Fig. 1, a) line) above
the microwave threshold. The evolution of the phase space
distribution gives further insight for a better understand-
ing of the mechanisms responsible for the growth of the
energy spread and of its damping. In fact, referring to
Fig. 1, when the energy spread is close to one minimum,
the phase space distribution shows a perturbation, super-
imposed to the stationary distribution, which suggests the
existence of a coherent microstructure (microbunching) in-
side the bunch [6]. This microbunching increases the en-
ergy spread producing a turbulent distribution. In some
regions the particles, due to the wake fields non lineari-
ties, experience larger oscillation amplitudes, and the dis-
tribution endures a filamentation process. The phase space
evolution is then characterized by a reduction of the lo-
cal density due to the particle diffusion which tends to
decrease the microbunching efficiency so that, the natural
radiation and Landau dampings are able to counteract the
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phase space anomalous growth, until the initial configura-
tion is restored.

The microbunching mechanism producing the micro-
wave instability has been discussed in ref. [7], where it is
considered the responsible for coherent radiation emission
observed in operating storage rings affected by strong mi-
crowave instability, an effect similar to the Free Electron
Laser dynamics.

The analysis of the simulations clarifies also the contri-
bution of the damping mechanisms: the radiation process is
the main responsible for the saw tooth behavior, while the
Landau damping is important in counteracting the instabil-
ity. In fact, by running simulations with a very long radi-
ation damping time, the saw tooth pattern disappears, the
bunch distribution remaining stable with an energy spread
slightly larger than the maximum obtained from Fig. 1.

3 DYNAMICAL MODEL

To model the saw tooth behavior, we start by considering
the coasting beam case, for which the linear theory pre-
dicts an instability caused by a growth of a perturbation
produced by the wake fields, and an opposed damping de-
riving from a spread in the oscillation frequencies (Landau
damping) [1]. The extension of the theory to the bunched
beam case is known as Boussard criterion [8].

If we suppose that the energy spread�" is a quadratic
combination of the natural(�"n) and instability induced
(�i) parts, that is

�" =
�
�2"n + �2i
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2 = �"n
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and consider a Gaussian bunch distribution with a Lorentz
spectrum of the oscillation frequencies, then the growth
rate of the instability induced by the wake fields can be
written as [6]
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and the Landau term as
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wheren is an harmonic of the revolution frequency,�c the
momentum compaction,T0 the revolution period,I0 the
average beam current,Z=n the broad band impedance at
thenth harmonic of the revolution frequency,E0 the beam
energy.

We derive now differential equations, governing the time
evolution of the energy spread and of the saw tooth growth
rate, without entering into the details of the phase space
dynamics. We denote the growth rate of the instability by
� and relate such a quantity with the induced energy spread
�r , according to the obvious relation
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where�s is the longitudinal damping time.

To explain the saw tooth behavior, we assume that� is
a time dependent function. Physical observations suggest
that the equation should include the Boussard criterion sta-
tionary solution, thus yielding a dependence of the energy
spread on the current asI1=3

0
. The equation should also be

capable of reproducing relaxation type oscillations. From
these considerations, we make the ansatz that� satisfies an
equation of the type

1
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which contains, on the right hand side, the two opposite
terms (2) and (3), accounting respectively for the wake
fields instability and the Landau damping,c1 andc2 being
constant parameters.

Eqs. (4) and (5) provide our model equations. They give
stationary solutions with�" = �"n in any situation for
which c1A < c2B. The casec1A = c2B is exactly the
Boussard criterion which is therefore satisfied.

The above equations rely on simple assumptions. For ex-
ample, in case of theA parameter, the actual bunch shape
is distorted by the potential well and is not Gaussian. Fur-
thermore a local density perturbation may be responsible
for the microwave instability [7]. This is the reason we in-
troduced the factorc1 in eq. (5).

For what concern theB parameter, and then the intro-
duction of the factorc2, the major approximations are in the
linear relationship assumed between the spectrum width
producing Landau damping and the energy spread�", and
the assumption of a Lorentz spectrum. Actually the oscilla-
tion frequency spectrum depends on the bunch distribution
and on the non linearities of the wake fields.

To verify the model, we first estimate the constantsc1
and c2 by comparing the simulations and the solution of
Eqs. (4) and (5) under the condition of stability, that is for
c1A < c2B, getting, as best fit,c1 = 0:35 andc2 = 2:1.
Then, with the same factorsc1 andc2, we analyze the case
of instability. The resulting time behavior of the energy
spread, given by Eqs. (4) and (5), is shown in Fig. 1 (the b)
line), which shows a good agreement with the simulation
results. If we increase the damping time�s and eventually
it tends to infinity, the saw tooth behavior disappears, thus
giving a stationary energy spread which depends on the ini-
tial conditions and on the coefficientsc1A andc2B, that is
on the intensity of both the instability and Landau damping.
In this case, from eq. (5), we get that the energy spread has
a dependence on the current of the kindI

1=3
0

.
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Figure 2: Energy spread vs number of turns with the FEL
amplifier for different FEL intensities.

4 FEL CONTRIBUTION

We have investigated the effect of the FEL on the storage
ring saw tooth instability. The FEL induced energy spread
and associated bunch lengthening decrease the peak cur-
rent and the wake field intensity, thus shifting the instabil-
ity threshold to higher levels. The parameter which can
be used to control the instability is the intensity of the laser
field itself. In Fig. 2 we have considered a storage ring FEL
amplifier. When the laser intensity is sufficiently large (the
a) curve), the FEL interaction destroys completely the saw
tooth instability pattern, the beam energy spread is essen-
tially that induced by the FEL. For lower intensity the saw
tooth oscillation amplitudes are reduced (the b) curve), for
intermediate intensity (the c) curve) it is possible to switch
off the instability without inducing any energy spread.

A similar analysis has been performed with the FEL in
the oscillator mode. In this case, the extension of the model
to include the FEL dynamics can be useful to provide an ex-
planation of the complex phenomenology of the interplay
between the FEL and the storage ring by means of simple
but physically pregnant and transparent formulae. By re-
calling that the FEL induced energy spread, proportional
to the laser power, combines quadratically to the natural
one [9], eq. (4) is modified in

d�2r
dt

= ��2r �
2

�s

�
�2r � x0

�
(6)

wherex0 is linked to the intracavity power and satisfies the
differential equation
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whereg0 is the FEL small signal gain coefficient,�" (0) =
4N�"n with N being the number of ondulator periods,
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Figure 3: Energy spread vs number of turns with the FEL
oscillator.

and� represents the cavity losses. The results of the cou-
pled equations in presence of the FEL oscillator show that
the saw tooth instability is critical to the ratio between
the losses and the gain. If this ratio is relatively small,
the intracavity power grows and induces a large energy
spread which overcomes the saw tooth instability. Then
the growth rate� is suddenly brought to zero and the total
energy spread tends to a stable behavior. When the ratio
increases, the onset of the laser takes longer time to estab-
lish. In Fig. 3 we show a preliminary comparison between
the results of the model (the b) line) and the more time
consuming numerical simulations (the a) line). The agree-
ment is fairly satisfactory, and further investigations are in
progress.
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