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The time evolution of the energy spread above the mi- « 104 i
crowave instability threshold in a storage ring is described - i
by means of two coupled non linear differential equations. <104 | N My N M
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The microwave instability produces an increase of energy

spread and a consequent anomalous bunch lengthenipgyyre 1: Energy spread vs number of turns: a) simulations,
and limits the performances of storage rings. It has been th§¢ model equations.

subject of several investigations [1, 2, 3, 4], and the prob-

lem has been studied by exploiting the linearized Vlasov

equation, which describes the time evolution of the single

bunch distribution function in the phase space. The thresHsed either as an amplifier or an oscillator, may be an effi-
old of the instability depends on the wake fields and ofient tool to damp the saw tooth instability. The physical
the current intensity. Above the threshold the linear thenhterpretation of the simulation results has also suggested
ory can not explain the time evolution of the distributionthe way to extend the model equations by including the ef-
function. The increase of the bunch phase space dimdgcts of the FEL in the oscillator mode. This approach pro-
sions may provide the conditions for a new equilibriurﬁ/ides a clear picture of the FEL-storage ring mutual feed-
configuration. It may happens, however, that the equiliB?aCk, and clarifies the mechanism of the instability inhibi-
rium is never reached, and the energy spread oscillatestifn:

time with a pattern similar to relaxation type oscillations,

as shown in Fig. 1. Such a behavior is known as saw tooth 2 SAW TOOTH INSTABILITY

instability [4], and it occurs in storage rings characterized ) - )
by intense beam currents. For the study of the saw tooth instability, we use a time

An appropriate analysis of the saw tooth instability regjomain simulation code, which includes the effects of the

quires the inclusion of non linear terms in the Vlasov equa®!f induced wake fields. The simulatior;s, using a pure
tion. The problem has been afforded in ref. [5], where itnductive impedance and employidgx 10° macroparti-
is shown that the time evolution of the distribution func-CleS, Show a clear saw tooth behavior (Fig. 1, a) line) above

tion may have different patterns, including relaxation typé1€ microwave threshold. The evolution of the phase space
oscillations. distribution gives further insight for a better understand-
In this paper, analyzing the results of appropriate ndng of the mechanisms' respons@ble for the growth .of the
merical simulations, we study the conditions for the on€M€'9Y spread and of its damping. In fact, referring to
set, growth and relaxation of the saw tooth oscillations fdr'9- 1, when the energy spread is close to one minimum,
a pure inductive impedance. The analysis points out ti€ Phase space distribution shows a perturbation, super-
mechanisms responsible for the saw tooth behavior: t{@P0sed to the stationary distribution, which suggests the

growth of the instability is produced by non linear Wakesgmstence of a coherent microstructure (microbunching) in-

it is counteracted by the Landau damping, and it is finally'd® the bunch [6]. This microbunching increases the en-
damped by the radiation process. We describe these §f9Y SPréad producing a turbulent distribution.  In some
fects through some quantities averaged over the bunch df§9ions the particles, due to the wake fields non lineari-
tribution, giving a model employing two coupled non linearl€S: experience Iarger oscnla_tlon amplitudes, and the dis-
equations which reproduce the relaxation oscillations of tHg/Pution endures a filamentation process. The phase space
instability in a fairly satisfactory way. We employ numer-€volution is then characterized by a reduction of the lo-

ical simulations to show that a Free Electron Laser (FELf2! density due to the particle diffusion which tends to
decrease the microbunching efficiency so that, the natural

* Email: migliorati@axrma.uniromadl.it radiation and Landau dampings are able to counteract the
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phase space anomalous growth, until the initial configura-
tion is restored.

The microbunching mechanism producing the micro- 1 do? 2
wave instability has been discussed in ref. [7], where it is g_g dt < )
considered the responsible for coherent radiation emission

observed in operating storage rings affected by strong Mjjherer, is the longitudinal damping time.
crowave instability, an effect similar to the Free Electron . . .
. To explain the saw tooth behavior, we assume thist
Laser dynamics. . : : .
. . . . a time dependent function. Physical observations suggest
The analysis of the simulations clarifies also the contri; . : o
. ; ; ; o that the equation should include the Boussard criterion sta-
bution of the damping mechanisms: the radiation process s : .
; : . . tionary solution, thus yielding a dependence of the energy
the main responsible for the saw tooth behavior, while the /3 .
d5'°. The equation should also be

Landau damping is important in counteracting the instabiis-pread on the current . o
ity. In fact, by running simulations with a very long radi- capable of reproducing relaxation type oscillations. From

ation damping time, the saw tooth pattern disappears, t ese considerations, we make the ansatzilsattisfies an

bunch distribution remaining stable with an energy sprea‘?)quation of the type
slightly larger than the maximum obtained from Fig. 1.

(4)

Ts

lda = ad
adt (1402

1
2

3 DYNAMICAL MODEL

To model the saw tooth behavior, we start by considering

the coasting beam case, for which the linear theory preghich contains, on the right hand side, the two opposite
dicts an instability caused by a growth of a perturbatiogy o (2) and (3), accounting respectively for the wake

produced by the wake fields, and an opposed damping ggs|qs instability and the Landau damping,ande, being
riving from a spread in the oscillation frequencies (Landaﬁonstant parameters.

damping) [1]. The extension of the theory to the bunched
beam case is known as Boussard criterion [8].

If we suppose that the energy spreadis a quadratic
combination of the naturalo.,) and instability induced
(o) parts, that is

—czB(1+Uf) (5)

IS

Egs. (4) and (5) provide our model equations. They give
stationary solutions witlb. = o, in any situation for
which¢1 A < ¢;B. The casesy A = ¢ B is exactly the
Boussard criterion which is therefore satisfied.

The above equations rely on simple assumptions. For ex-
ample, in case of thel parameter, the actual bunch shape
(1) is distorted by the potential well and is not Gaussian. Fur-
thermore a local density perturbation may be responsible
and consider a Gaussian bunch distribution with a Lorenfgr the microwave instability [7]. This is the reason we in-
spectrum of the oscillation frequencies, then the growttioduced the factar, in eq. (5).
rate of the instability induced by the wake fields can be For what concern thé parameter, and then the intro-
written as [6] duction of the factoe,, the major approximations are in the
linear relationship assumed between the spectrum width
producing Landau damping and the energy spreadnd
n \/(27r)3/2I0yS | Z/n]| 1 B A the assumption of a Lorentz spectrum. Actually the oscilla-

[SIE
[SIE

O = (O’?n + U?) = Um(l + af)

To (Eo/€) 0cn (1+ U%)% B (1+ U%)% 2) tion frequency spectrgm depends on the bunch distribution
and on the non linearities of the wake fields.
and the Landau term as To verify the model, we first estimate the constants
andc; by comparing the simulations and the solution of

=

=B(1+0}7)? (3) Egs. (4) and (5) under the condition of stability, that is for
c1A < e B, getting, as best fip; = 0.35 ande, = 2.1.

wheren is an harmonic of the revolution frequenay,the ~ Then, with the same factors andc,, we analyze the case
momentum compactioriy the revolution period], the of instability. The resulting time behavior of the energy
average beam currenf,/n the broad band impedance atspread, given by Egs. (4) and (5), is shown in Fig. 1 (the b)
thent" harmonic of the revolution frequendy, the beam line), which shows a good agreement with the simulation
energy. results. If we increase the damping timeand eventually

We derive now differential equations, governing the timdt tends to infinity, the saw tooth behavior disappears, thus
evolution of the energy spread and of the saw tooth growigiving a stationary energy spread which depends on the ini-
rate, without entering into the details of the phase spad®@l conditions and on the coefficientsA ande, B, that is
dynamics. We denote the growth rate of the instability bpn the intensity of both the instability and Landau damping.
« and relate such a quantity with the induced energy spredithis case, from eq. (5), we get that the energy spread has
o, according to the obvious relation a dependence on the current of the kfééz.

n
Tg?wacam (1 + 0’3)
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Figure 2: Energy spread vs number of turns with the FEEigure 3: Energy spread vs number of turns with the FEL
amplifier for different FEL intensities. oscillator.

4 FEL CONTRIBUTION andn represents the cavity losses. The results of the cou-

We have investigated the effect of the FEL on the stora ed equations jn presence of Fhe FEL oscillat'or show that
ring saw tooth instability. The FEL induced energy sprea € lsaw toothlestabm.ty |slfctrk|]t'lcal :0 t.he r;’ﬂtlp Li)etweelr:
and associated bunch lengthening decrease the peak % F .0§SeS "’.‘tn € gan. Isd ra ('jo IS re allvey smat,
rent and the wake field intensity, thus shifting the instabil- e mdracre]l_why power grov;ﬁ an mt “fhe? at %r?e er%ehrgy
ity threshold to higher levels. The parameter which ca pread which overcomes the saw tooth instability. en

be used to control the instability is the intensity of the lase € growth ratgmt IS judtdenlytb*rjcl)u%htr:o ;ero\:;\v%d th;ahtotalt.
field itself. In Fig. 2 we have considered a storage ring FeENeray spread tends 1o a stable behavior. en the ratio

amplifier. When the laser intensity is sufficiently large (th p(;]re;':\s'(f,, tge onsre]:t of the I?sgr takes Ionge.r t'mﬁ t? estab-
a) curve), the FEL interaction destroys completely the saw’ ™ N FIg. 5 We Show a prefiminary companson between
e results of the model (the b) line) and the more time

tooth instability pattern, the beam energy spread is essen-

tially that induced by the FEL. For lower intensity the sanfOnsuming numgncal simulations (thg a) I|n_e). The agree-
tooth oscillation amplitudes are reduced (the b) curve), fdpentis fairly satisfactory, and further investigations are in

intermediate intensity (the c) curve) it is possible to switcrO9ress.
off the instability without inducing any energy spread.

A similar analysis has been performed with the FEL in S5 REFERENCES
the oscillator mode. In this case, the extension of the modgh A \v. chao,Physics of Collective Beam Instabilities in High
to include the FEL dynamics can be useful to provide anex-  gnergy Acceleratorsiiley-Interscience, New York (1993).
planation of the complex phenomenology of the interplat/2 K. Oide, and K. Yokoya, KEK Report 90-10, KEK, Tsukuba
between the FEL and the storage ring by means of simpe] Jépan (’1990). ' ’ ’ ' '
but physically pregnant and transparent formulae. By re- o _
calling that the FEL induced energy spread, proportioniﬁ] K. L. F. Bane, and K._Olde, ifProc. IEEE Particle Accelera-
to the laser power, combines quadratically to the natural tor ConferenceWashington, (1994).

one [9], eq. (4) is modified in [4] M. D’yachkov, Ph.D. thesis, University of British Columbia,
(1995).
do? 9 [5] G.V. Stupakovet al,, Physical Review 5, 5976 (1997).
ro__ 2_ & 2 _ 6) K . )
a YT (o7 — o) ( [6] G. Dattoli, et al., inProc. of 16th ICFA Workshop on Nonlin-

- . . . ear and Collective Phenomena in Beam Physkiidosso,
wherex is linked to the intracavity power and satisfies the Italy, (1998).

differential equation
d [7] J. M. Wang, Physical Review &3, 984 (1998).

[8] D. Boussard, Technical Report No. LABII/RF/Int./75-2,
1 dxy _ 8590 CERN, Geneva, (1975).

zo dt To [9] G. Dattoli, et al, NIM A 393, (1997).
1
2 3/2 k ()
V1402 + 1.7 (0)° (1 + 02) 8590

whereg is the FEL small signal gain coefficient, (0) =
4No., with N being the number of ondulator periods,
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