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Abstract

Designs for next-generation accelerators, such as future
linear colliders and short-wavelength FEL drivers, require
beams of short (mm-length or smaller) bunches and high
charge (nC-regime). As such a high charge microbunch
traverses magnetic bends, the curvature effect on the bunch
self-interaction, by way of coherent synchrotron radiation
(CSR) and space charge force, may cause serious emittance
degradation. This impact of CSR on the beam transport of
short bunches has raised significant concern in the design
of future machines and led to extensive investigations. This
paper reviews some of the recent progress in the under-
standing of the CSR effect, presents analysis of and compu-
tational work on the CSR impact on short bunch transport,
and addresses remaining issues.

1 INTRODUCTION

The designs of future accelerators often require creation
and manipulation of beams with high phase space densities.
This incorporates short bunches with high charge being cir-
culated or compressed by magnetic bending systems [1, 2].
The strong requirement of these designs on the preserva-
tion of small emittances makes it crucial to understand the
evolution of beam phase space as a high charge microbunch
traverses magnetic bends.

When an electron bunch goes through a bend, each elec-
tron gives out synchrotron radiation. When the radiation
wavelength is longer than the bunch length, the radiations
from individual electrons add constructively to form co-
herent synchrotron radiation (CSR). This coherent syn-
chrotron radiation is a result of the curvature induced elec-
tromagnetic self-interactions within the bunch. These self-
interactions may have detrimental effects on beam phase
space: the longitudinal collective self-force could induce
energy spread on the bunch, which further causes disper-
sive displacement of the particles due to the nonzero dis-
persion in the bend region, whereas the transverse col-
lective self-force could directly drive the transverse mo-
tion nonuniformly across the bunch. Both the longitudi-
nal and transverse self-interaction forces can cause emit-
tance growth. Even when the bunch is transported through
an achromatic system, since the curvature induced energy
deviations occurduring the bends, emittance degradation
could still be a potential problem.
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The problems related to the CSR effect in bends are:
What are the curvature induced longitudinal and transverse
self-interaction forces? What are their parametric depen-
dence, their transient and steady state behavior? What is
the effect of shielding by the vacuum chamber surrounding
the beam? What is the impact of the curvature induced self-
interaction on the short bunch transport through magnetic
bending systems? What is the present understanding of the
cancellation of the centrifugal space-charge force (CSCF)
with the particle potential? What is the role of the non-
inertial space-charge force? How does one simulate the
bunch dynamics in a curved trajectory with the presence of
the CSR effect? How does one handle the retardation and
singularity which is intrinsic to the problem? How does
one model the beam so as to maintain self-consistency of
the simulation? How do the simulation results benchmark
with analysis? Finally, how do the analysis and simulation
compare with experiments?

This paper reviews some of the main results in the anal-
ysis, discusses the self-consistent simulation of the CSR
impact on bunch dynamics, and highlights recent experi-
ments.

2 OUTLINE OF THE CSR PROBLEM

First we outline the fundamental equations governing the
curvature induced bunch self-interaction.

Consider a source electron with chargee, velocityv and
acceleration_v. The electromagnetic field generated by the
source electron at its retarded space-time(r0; t0) on a test
electron at(r; t) is described by the Li´enard-Wiechert for-
mula:E0 = E
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where� = v=c, _� = _v=c, 
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0,

R = jRj, andn = R=R. The subscript “ret” denotes the
retardation condition

t0 = t� jr� r
0j=c; (3)

which requires the fields to travel from source to test elec-
tron with the velocity of lightc. HereEc

0
andBr

0
are the

Coulomb fields, andEr
0

andBr
0

are the radiation fields
caused by the acceleration_� of the source electron. The
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Lorentz force applied on the test electron by the single
source electron is thereforeF0(r; t) = F
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Given the above single particle forces, we can now move
on to discuss the collective forces generated by a bunch.
For a bunch moving on a circular orbit, lets denote the
initial offset of a particle from the bunch center, and the
particle’s trajectory asr0(s; t). Then the bunch density
distributionn(r; t) can be expressed in terms of its initial
density distribution�(s) with respect to the bunch cen-
troid: n(r; t) =

R
ds�(s)Æ(r � r0(s; t)). A test elec-

tron in the bunch will then experience the collective self-
interaction forces, which are the integral of the single par-
ticle Coulomb and radiation forces in Eq. (4) generated by
all the electrons in the bunch,�

F
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R
F

c
0
(r; t; s0)�(s0)ds0

F
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R
F

r
0
(r; t; s0)�(s0)ds0

(5)

whereFcc stands for thecollective Coulomb force, andFcr

for thecollective radiation force. The two collective forces
have distinctive features. For steady-state circular motion,
F

cc is negligible at high energy whileFcr is still effective.
However, even at high energy, both are important for tran-
sient interaction. Therefore they should both be included
when considering the feedback to the bunch dynamics

d(
m _v)=dt = F
ext +F

cc +F
cr; (6)

whereFext stands for the external force.
Instead of the integration of single particle Li´enard-

Wiechert fields as described above, it is often easier to ana-
lyze the bunch self-interaction forces in terms of the poten-
tials

F = �er(�� � �A)� edA=cdt: (7)

However, associating the potential approach with the
Li énard-Wiechert approach often can help us identify the
nature of a potential term — if it is originated from the col-
lective Coulomb forceFcc or the radiation forceFcr.

3 ANALYSIS OF SELF-INTERACTION

In this section we study the curvature induced bunch self-
interaction of a rigid Gaussian line-bunch on a circle in free
space, with the particle density function

�(s; �s) = e�s
2=2�2s=

p
2��s: (8)

Heres is the longitudinal distance from the bunch center,
and�s is the rms bunch length. The radius of the circle
is � and the number of electrons in the bunch isN . The
velocity of the bunch isv, and� = v=c.

3.1 Steady-State Results in Free Space

The longitudinal collective force on the bunch is [3, 4, 5]
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This equation shows that the longitudinal force is bigger
for smaller bend radius and shorter bunch length, and it
causes energy spread by accelerating the bunch head and
decelerating the bunch tail. For example, for� = 1 m,
�s = 1 mm, andN = 109, we havejF�jmax � 8keV/m.
The steady-state CSR power in free space (fs) is [5, 6]

P fs = �
Z
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Using Eq. (7), the transverse collective force yields
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where the third term on the right of the equation contains
the rate of change of the transverse direction, which is
purely due to the curvature effect. For circular motion, this
term gives the centrifugal space-charge force (CSCF) [7]:

FCSCF= eA � der
cdt

= e
��A�

r
(12)

with r the distance of the test particle from the center of the
design circle. It can be shown thatFCSCFis dominant inFr
of Eq. (11). For a rigid 2D Gaussian ribbon-bunch on a cir-
cular orbit with density distribution�(s; �s)�(z; �z) , with
�(s; �s)) given in Eq. (8) andz being the vertical offset
from design orbit, one has [8]
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)

�
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(13)
For example, for� = 1 m, �s = 1 mm, �z = 1 mm,
N = 109, we havejFCSCFjmax � 3 keV/m. Similar to
the coasting beam case [7], the logarithmic dependence of
FCSCF with respect to the transverse offsetx = r � � also
exists for a bunched beam. This highly nonlinear behavior
with transverse offset makes its impact on the transvese dy-
namics worrisome for machine designers. This topic will
be further discussed in Sec. 4.1.

3.2 Shielding of Steady-State CSR
The mechanism of shielding of steady-state coherent syn-
chrotron radiation by two parallel conducting plates is well
understood [9, 10, 11]. Denoting the gap size between the
two plates beingh, and the shielding factor as

� =

r
2

3

���
h

�3=2 ��s
�

�
; (14)

we can show [12] that for strong shielding(� � 1), the
ratio of the shielded CSR powerP sh to free-space steady-
state CSR powerP fs (Eq. (10)) is given by

P sh=P fs ' 4:2�5=6e�2� : (15)

The behavior ofP sh=P fs vs. � is depicted in Fig. 1. The
free-space case corresponds toh = 1, or � = 0, where
P sh=P fs = 1. As the gap becomes narrower,� grows big-
ger, and the CSR is gradually shut off. For example, for
� = 1 m, �s = 1 mm,h = 2 cm, we have� = 1:6, and
P sh=P fs = 0:25.
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Figure 1: Steady-state CSR power with shielding, with
free-space case corresponding to� = 0.

3.3 Transient Self-Interaction with Shielding

The free-space transient self-interaction for a bunch enter-
ing a bend from a straight path was recently studied by
Saldin [13]. Later we studied the transient self-interaction
in the presence of shielding [14]. To illustrate the duration
and magnitude of the transients, we plot in Fig. 2 the in-
stantaneous powerP sh(t) (normalized byP fs in Eq. (10))
radiated by a line Gaussian bunch as a function of�, which
is the angle of the bunch center entering the bend from a
straight path. Here we use the typical parameters� = 1
m, �s = 1 mm. Fig. 2 shows that the free-space power
increases from zero and saturates to its steady-state value
as the bunch moves into the bend. Forh = 2 cm, the tran-
sient power oscillates and saturates to its steady-state value
after� = 30Æ. For machine designs intending to reduce the
CSR effect by using a narrow gap size, one should notice
that in a certain bend region, the transient interaction with
shielding has much bigger amplitude than its steady-state
counterpart, as shown by theh = 2 cm curve in Fig. 2
around� � 10Æ.
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Figure 2: Transient power loss of an ultrarelativistic bunch,
due to the curvature-induced self-interaction in the pres-
ence of two parallel plates, with� = 1 m,�s = 1 mm, and
various plate spacingh. Here� is the angle of the bunch
center entering the bend.

Our study [14] also shows that the collective Coulomb
force from the straight path upstream of a bend makes an
important contribution to the transient self-interaction of
the bunch. This is because when the bunch turns into the
arc, the pancake-shaped Coulomb field from the straight
path shines right upon a portion of the bunch just turned
into the arc, causing the transient collective Coulomb ef-
fect comparable in magnitude with the transient collective
radiation effect.

4 IMPACT ON BUNCH DYNAMICS

4.1 General Formalism

In the previous section, we discussed the curvature induced
bunch self-interaction forces. These forces feed back on the
bunch dynamics through the equation of motion in Eq. (6).
Let � be the angle of an electron into the bend,E0 be the
design energy,x = (r��)=� be the relative offset from the
design orbit, and the design bending field be the only ex-
ternal field. Then the first order equation for the transverse
motion of an electron in the bunch is [8]

d2x

d�2
+ x =
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+
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whereFr is given by Eq. (11), and denoting the initial po-
tential of the electron as�0, one has

�E =

Z �

0

�F��d�
0�e(���0); �F� = e

@(�� � �A)

c@t
:

(17)
It is instructive to further write Eq. (16) as
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HereG is the residual function in which the logarithmicA�

term (Sec.3.1) inFr is largely cancelled with the potential
� in Eq. (17), as shown by the underlined term:
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.
The general formula in Eq. (18) applies to both the coast-

ing beam case and the bunched beam case. For a coasting
beam with constant density�, one can show that

�F� = 0; G0 = constant; (20)
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as studied by E. Lee [15]. For a bunched beam, in steady
state, the driving terms in Eq. (18) are

�F� = F� (F� as in Eq. (9))
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� e
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with V0 � �� ��A�. Note that unlike the coasting beam,
whereG0 is a constant which only modifies the equilib-
rium orbit, here for a bunched beam,G0(s) andG1(s) are
non-uniform across the bunch, so they both could cause
emittance growth. Using the result ofV0 [8], one has
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For�s=� � 10�6 to 10�3, one often has

x� (�s=�)
1=3 � 1: (24)

It then yields

jG0jmax

j�F�jmax
� 1 and

jG1jmaxx

j�F�jmax
� 1: (25)

With the comparisons ofG and�F� in Eqs. (23) and
(25), one should keep in mind that in Eq. (18), the effect
of the residual functionG on the transverse motion should
be compared with theintegral of �F� over the bend an-
gle

R
�F�d�

0. Therefore the comparison of the effects of
G and�F� varies with different machine designs. Also
note that similar to the initial energy spread,�0 in Eq. (18)
does not cause emittance growth for an achromatic bending
system. For a line charge movingon-axisfrom a straight
path to a circle, i.e.,x = 0, the nonvanishing(� � �0)
is purely the transient effect due to the collective Coulomb
forces from the straight path [14]. Therefore the fact that
� is largely cancelled byA� in Eq. (19) indicates that the
on-axisA� undos part of the transient effects.

4.2 Noninertial Space-Charge Force

The role of the “noninertial space-charge force” [16] can be
understood in the context of the big picture discussed in the
above sections. This force arises from the analysis of the
longitudinal collective force exerted on an off-axis (x 6= 0)
test particle from a finite uniform bunch on a circle.

We start with the single particle force exerted on an ob-
servation particleO by a source particleS orbiting on a
circle. Let the distances fromS andO to the center of the
circular orbitC beRs andRo respectively,c� be the dis-
tance fromS to O, and
s be the Lorentz factor ofS. In
the cylindrical coordinate, at the observation timet,O is at
(Ro; �o) andS is at (Rs; �s). The corresponding retarded
time forS is t0 whenS is at(Rs; �

0

s). The angular distances
of O andS from the bunch center are�o = �o � �sct=Rs

and�0 = �0s � �sct
0=Rs respectively. Letso = Rs�o,

s0 = Rs�
0 and� = �o� �0s. For�s = so� s0, the retarda-

tion relation requires

Rs� = �s+ �sc�; c� =
p
R2
s +R2

o � 2RsRo cos �:
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Thesingle particlelongitudinal force fromS onO is
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where� and� are implicit functions of�s via Eq. (26).
Thecollectivelongitudinal force on the test particleO is
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with � the constant bunch density, andsr and sf stand-
ing for the rear and front of the line bunch respectively.
Comparing thesingle particleforce in Eq. (27) with the
Li énard-Wiechert fields in Eqs. (1) and (2), one finds that
on the right-hand side of Eq. (27)), the first term is the
Coulomb field and the second and third terms are the ra-
diation field. Therefore in thecollectiveforce of Eq. (28),
the first term is the collective Coulomb force and the sec-
ond and third terms are the collective radiation force.

The longitudinal collective force can also be analyzed
using the potential approach. For�o = �s one has
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Notice that Eq. (30) is equivalent to Eq. (28) but slightly
varied in expression. In the literature [16], for the terms
on the right-hand side of Eq. (30), the first term is called
the “usual Coulomb force”, the second term is named the
“noninertial space-charge force” and the third term is called
the “ usual CSR force”. One can show that the “non-
inertial space-charge” term is nothing but the�ed�=cdt
term in Eq. (29), which integrated over time gives the term
�e(� � �0) in Eq. (17) for the energy change. As we’ve
shown in Eq. (19), the effect of the potentials� in the
energy change is largely cancelled by the termA� in Fr,
and only the residual of their cancellation, the function
G, acts as one of the driving factors to the transverse mo-
tion. Therefore we remark that the effect of the “noninertial
space-charge force” on the transverse motion must be con-
sideredtogetherwith the radial force (Talman’s force) so as
to have a complete and proper description of the dynamical
system.

5 SELF-CONSISTENT SIMULATION

The analyses in the previous sections are based on the rigid-
line-bunch model. In reality, a bunch has finite transverse
size, and its dynamics responds to the curvature induced
self-interaction. In order to study the actual dynamical sys-
tem, we have developed aself-consistentsimulation [17]
based on a 2-dimensional macroparticle model. This simu-
lation integrates numerically the following equation of mo-
tion around a design orbit

d(
�r)

cdt
� ��

�

��
r

�

0�0
r0

�
= ~Fr (31)

d(
��)

cdt
+ �r

�

��
r

�

0�0
r0

�
= ~F�; (32)

where�0; 
0 are the design parameters,r0 the design ra-
dius, Bext = �e
0�0ez=rer0 for re = e2=mc2, and
~F = (e=mc2)(E + � � B) is the curvature induced self-
interaction force in free space. The algorithm for the com-
putation of the curvature induced self-interaction force~F
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and its benchmark with analytical results are described
in Ref.[17], which shows that the macroparticle model
handles the retardation and self-consistency in a straight-
forward manner.

In Ref.[17] it is shown that the fields from each
macroparticle are 2-dimensional integrals over the area
surrounding the previous path of the source macroparti-
cle. The singularities in the integrands are intrinsic to the
Green’s function and are readily removed by integration by
parts using the finite 2-dimensional size of the macroparti-
cles. By doing this, one finds that as the result of the retar-
dation relation, the integrand ofFr has a narrow spike near
the observation point (in addition to the long range behav-
ior), which has nontrivial contribution to the integration.
Therefore extra care is needed for the numerical integra-
tion to computeFr .

The above described simulation can handle both tran-
sient (including entrance and exit) and steady-state self-
interaction self-consistently. It also takes care of cases in-
volving the coupling of two or more bends, where the radi-
ation generated in an earlier bend can influence the bunch
when it is at succeeding bends. The disadvantage of the
above scheme is that it takes extra numerical work to cal-
culate the radial force correctly, while this force is actually
largely canceled with�, which is hidden in
 of Eq. (31) as
part of�E. Therefore this schemeindirectly handles the
cancellation ofFr and�.

To overcome the disadvantage in the above scheme, we
are currently improving the simulation by numerically inte-
grating the following reduced form of the equation of mo-
tion:8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

d(
 + ~�)�r

cdt
� ��

"
(
 + ~�)��

r
�


0�0

�

#

= �
@ ~V0
@r

+ ��

Æ ~A�

r
�

dÆ ~Ar

cdt
d(
 + ~�)��

cdt
+ �r

"
(
 + ~�)��

r
�


0�0

�

#

= �
@ ~V0
�@�

� ��

Æ ~Ar

r
�

dÆ ~A�

cdt
d(
 + ~�)

dt
=

@ ~V0
@t

(33)

where the reduced potentials are

~� =
e

mc2
� ~V0 =

e

mc2
(�� � �A)

Æ ~Ar;� =
e

mc2
(Ar;� � �r;��): (34)

In this new scheme,Æ ~A� is the residual of the cancellation
of � andA�, whose effect on the transverse dynamics can
be clearly identified. With the initial potential�(t = 0)
known, one can obtain at each step(�r; ��; 
 + ~�) as the
result of the driving factorsr ~V0 andÆ ~A. These driving
factors are computed from the macroparticle model as 2-
dimensional integrals in a similar way as the field calcu-
lation in Ref.[17]. Notice that due to the above mentioned

cancellation, when computing the driving factors in Eq. (6),
the retardation-caused local spikes in the integrands have
now negligible contribution to the integrals; therefore they
are numerically much easier to compute than the radial
forceFr in the previous scheme. Our numerical compu-
tation shows that for a line charge, the numerical results of
the driving factors agree with their analytical counterparts.
These numerical results are not sensitive to the macroparti-
cle size as long as it is much less than the real bunch size.
Development of simulation based on this new scheme is
still continuing.

6 RECENT EXPERIMENTS

Recently there are some experimental results on the CSR
effect in bends. One example is the measurement of the
transverse emittances as a function of bending angle car-
ried out on the CLIC bunch compressor [18], which shows
that among all the possible causes of transverse phase space
dilation, the CSR effect can best explain the measured
emittance growth. On the Jefferson Lab FEL beamline,
we are in the process of measuring the emittance growth
through the first180Æ arc as a function of the cryomodule
phase. The latter rotates the longitudinal phase space and
affects the bunch length along the beamline in a complex
way. Currently we are carrying out parametric studies of
the CSR effect using the simulation, and systematic bench-
marking of the simulation with experiment is underway at
Jefferson Lab.

The author thanks C. Bohn, J. J. Bisognano and P. Emma
for many helpful discussions. The support of NERSC for
the parallel computing on the T3E machine is also grate-
fully acknowledged.
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