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Abstract

In this paper we study coupling between the transverse
and longitudinal degrees-of-freedom in intense, rms mis-
matched charged particle beams. We find that a coher-
ent (2:1, i.e. parametric) resonance beween the transverse
and longitudinal mismatch eigenmodes has the effect that
a transverse “breathing mode” mismatch can excite a lon-
gitudinal mismatch and halo. If the resonance condition is
not satisfied we find practically no coupling. We compare
results obtained with the 3D rms envelope equations in a
uniform focusing channel with those obtained using large
scale, 3D parallel Particle-In-Cell (PIC) simulations.

1 INTRODUCTION

The study of halos in beams for new high intensity ac-
celerator applications has so far focused mainly on two-
dimensional models of the transverse halo. In recent work
on three-dimensional effects the presence of coupling phe-
nomena was recognized for a special class of fully self-
consistent equipartitioned equilibria, where it was claimed
that longitudinal or transverse halo results for small mis-
match (10%) if the mismatch in the other plane is large [1].

In this paper we examine the coupling issue using the
3D rms envelope equations and PIC simulations. Unlike
Ref. [1] we allow our beams to be non-equipartitioned. In
practical linac design the requirement of strict equiparti-
tioning [2] appears to be unnecessarily stringent; a recent
study of anisotropy effects showed that “temperature” ra-
tios of 2-3 between different degrees of freedom do not nec-
essarily give rise to instability and energy exchange [3]. We
therefore investigate these more general anisotropic equi-
libria subject to rms mismatch. The matched bunches are
not equilibria in a strict sense (i.e. functions of the Hamil-
tonian), but our simulations show — confirming the 2D
analysis of Ref. [3] — that within the constraint of modest
anisotropy the rms quantities remain practically constant.

2 ENVELOPE MODEL

For simplicity we assume constant focusing and bunched
beams with a rotational axis, which restricts the analysis
to the transverse “breathing mode” [4] generalized by the
presence of longitudinal motion, as well as a longitudinal
mode.The rms envelope equations can be written as
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The geometry factorf depends on the aspect ratiop ≡ c/a,
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with p2 − 1 replaced by1 − p2 for p < 1. The transverse
“quadrupolar” mode may be included, if desired, using sep-
arate equations forx andy and a more general form off .

For matched beams we assume vanishing time deriva-
tives. The resulting algebraic equations determine the rms
matching conditions, which are also used to initialize the
PIC simulations. It is convenient to introduce the space
charge shifted wavenumberskx,z according to
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For small perturbations the rms equations can be lin-
earized about the matched valuesc0, a0, which yields the
two eigenmodes of coupled envelope oscillation with cor-
responding eigenfrequenciesωtr,lo. For vanishing space
charge the “transverse” eigenmode oscillates with2k0,x,
and the “longitudinal” eigenmode with2k0,z. As is typi-
cal for systems with two degrees of freedom, results can
be represented in terms of three dimensionless parame-
ters which can be chosen conveniently. In Fig. 1 we
show the envelope frequencies for fixedc0/a0 = 1.5 and
k0,z/k0,x = 0.6. Note that the space charge limit is reached
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Figure 1: Envelope mode frequencies (normalized tok0,x)
for fixed aspect ratio and zero-current focusing constants as
function of tune depression in x.

for vanishingkz, which occurs nearkx/k0,x = 0.64, and
which corresponds to vanishing longitudinal emittance.
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The point of interest here is that the dispersion of mode fre-
quencies allows a 2:1 coherent resonance condition which
enables coupling between the transverse and longitudinal
eigenmodes. Obviously, this particular type of coherent
resonance condition is lost ifk0,z/k0,x < 0.5.

We can easily explore this coherent resonance behaviour
by using the nonlinear envelope equations. For the pa-
rameters at the 2:1 resonance condition of Fig. 1, Fig. 2
shows the results based on an initial transverse envelope
mismatch,MMxy = 1.5, and an initial longitudinal mis-
match,MMz = 1.0 (i.e. no initial longitudinal mismatch).
For convenience we have arbitrarily chosena0 = 1. We
have defined the initial mismatch factor according to

MMxy ≡ (a0 + δa)/a0, (6)

where the initial value of the transverse rms envelope is
a0 + δa. A similar definition holds forz. Later we will
have occasion to describe the resulting mismatch observed
in an envelope or PIC simulation due to an initial mismatch;
we will define the resulting mismatch according to

MMxy ≡ max(a(t)/a0), (7)

wherea(t) is the rms size,a0 is the matched size, and
where the maximum is over the duration of the simulation.
Returning to Fig. 2, note that there is a resonant exchange
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Figure 2: Solutions forδa, δc from the nonlinear envelope
equation at parametric coherent resonance with initial mis-
matchMMxy = 1.5 anda0 = 1.

between the transverse and longitudinal mismatch. The lat-
ter reaches large amplitude, after which the oscillation en-
ergy flows back into the transverse mismatch and the pic-
ture repeats. The fact thatδc exceedsδa is attributed to the
weaker axial focusing.

A more complete picture of the maximum axial mis-
match factors induced by this coupling process is shown
in Fig. 3 for fixedk0,z/k0,x = 0.6, kx/k0,x = 0.7, initial
MMxy = 1.5, and the aspect ratioc0/a0 as free parameter.
There is a stopband for the coupling process around the lin-
ear theory parametric resonance conditionωlo/ωtr = 0.5.
The width of the stopband is about±10% in this frequency
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Figure 3: Maximum axial mismatch factors induced by
coupling in nonlinear envelope model for fixedk0,z/k0,x =
0.6, kx/k0,x = 0.7 andMMxy = 1.5 as function ofc0/a0.

ratio. The maximum longitudinal amplitude is, however,
slightly shifted towards smaller frequency ratios, a nonlin-
ear effect that is reduced with decreasing mismatch.

While the 2:1 resonance can provide mismatch coupling
from the transverse to the longitudinal direction, the op-
posite is also possible in terms of a 1:2 resonance. This
direction of coupling is, however, found to be less efficient.

3 3D SIMULATIONS

This study used a parallel PIC code called IMPACT which
was developed as part of a DOE Grand Challenge in Com-
putational Accelerator Physics [5]. For this study we used a
second-order accurate, split-operator integration algorithm
which involves solving Poisson’s equation once in the mid-
dle of each step. This is accomplished using standard PIC
techniques, namely: (1) depositing charge on a numerical
grid, (2) solving Poisson’s equation on the grid and obtain-
ing the associated self-field, and (3) interpolating the field
from the grid to the particle’s positions. The free-space po-
tential is found by convolving the charge density with the
Green’s function using FFT’s and the method of Hockney
to analytically move the boundaries to infinity [6].

We present calculations for parameters associated with
Fig. 3. We have chosen an initial 6D waterbag distribution
matched by means of the rms equations. The simulation
was run for a total of 160 units of time using 4000 inte-
gration steps and 20 million simulation particles. At each
step a1283 grid was placed around the particles for the
space charge calculation (though the code actually used an
augmented2563 grid to solve the free space Poisson equa-
tion). To ensure that the bunch was sufficiently station-
ary, we tracked the initial distribution for 60 units of time
prior to applying the envelope mismatch. (In our units, one
unit of “time” equals one period of zero current transverse
oscillation, i.e. one period corresponding toko,x). We
ran 4 cases corresponding to 4 different points in Fig. 3:
the exact linearized theory resonance condition (case A1,
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ωlo/ωtr = 0.5); the point of maximum envelope coupling
for the value ofMMxy = 1.5 (case A2); and points at the
upper and lower edge of the stopband where practically no
coupling is expected (cases A3 and A4, respectively). After
applying the mismatch att = 60 we observe the coupling
and compare results with the envelope model. See Table 1.
For cases A1 and A2 the mismatch observed in the simula-
tions is quite close to that predicted by the rms equations,
and the results are in qualitative agreement for case A3.
Since the development of density inhomogeneity and halo
are beyond the envelope model, and since the rms emit-
tances change in the simulations following the mismatch,
we do not expect precise agreement.

case A1 A2 A3 A4
kz/k0,z 0.42 0.33 0.60 0.19
kz/kx 0.36 0.28 0.51 0.16
c/a 1.55 1.46 1.88 1.37

ωlo/ωtr 0.50 0.48 0.55 0.46
MM envelope

xy 1.50 1.50 1.50 1.50
MM simulation

xy 1.50 1.48 1.48 1.4
MM envelope

z 1.79 1.95 1.06 1.12
MM simulation

z 1.76 1.87 1.25 1.6
Xmax/a0 6.6 6.5 6.1 5.9
Zmax/c0 5.3 5.4 3.7 4.9

Table 1: Summary of 3D rms envelope results and 3D PIC
simulation results fork0,z/k0,x = 0.6 andkx/k0,x = 0.7.

Besides showing that the coupling predicted in the rms
equations is also present in PIC simulations, these results
indicate that rms-matched, non-equipartitioned beams in
certain parameter regimes may propagate stably for long
periods with little-or-no change in the rms quantities. Fig. 4
shows the rms emittances for case A1. Prior to the mis-
match atz = 60 there is almost no emittance growth; the
variation is roughly±0.3% for the transverse emittances
and±0.7% for the longitudinal emittance. Fig. 5 shows the
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Figure 4: rms emittances vs.z for case A1

rms beam sizes for case A1. There is obvious coupling be-
tween the horizontal and transverse planes, with the trans-
verse size reaching a minimum when the longitudinal size
is maximum, and vice-versa. By comparison, the corre-
sponding figure for case A3, Fig. 6, shows less coupling.
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Figure 5: rms beam sizes vs.z for case A1
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Figure 6: rms beam sizes vs.z for case A3

Case A4 is in fact unstable; we observed significant
changes in the rms emittances shortly after the start of the
simulation. Note that the initial temperature anisotropy
given by Tz

Tx
= ckz

akx
results in a value of 0.56 for the case

at resonance (A1), 0.37 for the case of maximum coupling
(A2), 0.95 (close to equipartitioned) for case A3, and 0.23
for case A4. The stability of the beams in cases A1, A2, and
A3, and the instability of case A4, confirms the findings of
analytical work in Ref. [3].
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