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Abstract

The interest in short bunches in many accelerator applica-
tions requires good understanding of the high frequency
behavior of the interaction between the beam and its en-
vironment. In this paper we report an analytic calculation
for the high frequency limit of the transverse impedance for
both a single and periodic array of cavities in a beam pipe.

1 INTRODUCTION

The acceleration of charged particles in periodic structures
leads to wakefields which are capable of interacting ad-
versely with particles in the same bunch, or in following
bunches. The conventional method of describing these
limitations in the current that can be accelerated involves
the longitudinal and transverse coupling impedances of the
structure. With the increasing use of short bunches, it be-
comes necessary to evaluate these coupling impedances at
high frequencies (wavelength of the order of the bunch
length). This has been done for the longitudinal impedance
of small periodic obstacles in an azimuthally symmetric
structure [1], where we have derived an integral equation
for the axial electric field at the inner bore radius. In this
paper we address the corresponding problem for the trans-
verse coupling impedance at high frequency. In particu-
lar, we first derive the integral equation for the electric
field at the bore radius of the structure and obtain the re-
sult for the transverse impedance of a single small obsta-
cle at high frequency by way of the high frequency limit
of the kernels. The problem is more complicated than it
was for the longitudinal impedance, since both TM and
TE waveguide modes are present, which requires match-
ing two components of the magnetic field at the boundary
between the waveguide and the obstacle. As we shall even-
tually see, however, in the high frequency limit, the TM
contribution dominates for a single obstacle, but the TE
contributions must be included in the periodic case. Never-
theless, we find the same relation between the longitudinal
and transverse impedances as exists for the resistive wall
impedances of a beam pipe.

We now consider a point chargeQ traveling in thez-
direction at(x, y) = (∆x, 0). We start with the definition
of thex component of the transverse coupling impedance
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Figure 1: The layout of geometry for a single cavity.

as a function ofk = ω/c. In the limit of small∆x we have

Zx(k) =
j

Q∆x

∫ ∞

−∞
dzejkz

[
Ex(z; k)

− Z0Hy(z; k)
]

x=0
y=0

(1)

in units of[Ω/m] (of transverse displacement). HereZ0 =√
µ0/ε0 = 120π [Ω] is the impedance of free space. We

then use
∂Ex

∂z
− ∂Ez

∂x
= −jkZ0Hy (2)

to obtain the alternate expression [2]:

Zx(k) = − 1
Q∆xk

∫ ∞

−∞
dzejkz ∂Ez

∂x

∣∣∣
x=0,y=0

, (3)

where we use the time dependenceexp(jωt).
The general technique consists of expanding fields in

both the pipe(r ≤ a) and cavity(a ≤ r ≤ b) regions
into a complete set of functions. At the common interface
(shown on Fig. 1) the fields have to be matched, yielding
equations for the expansion coefficients.

2 INTEGRAL EQUATIONS AND
SOLUTION FOR IMPEDANCE

We first consider a single cavity of radiusb and axial length
g. Matching of the azimuthal and longitudinal components

0-7803-5573-3/99/$10.00@1999 IEEE. 1752

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999



of the magnetic field at the pipe radiusr = a for 0 ≤ z ≤ g
(see Fig. 1), leads to the integral equations

1 =
∫ g

0

dz′[P11(z, z′) + Q11(z, z′)]ez(z′)

+
∫ g

0

dz′Q12(z, z′)eθ(z′), (4)

0 =
∫ g

0

dz′Q21(z, z′)ez(z′)

+
∫ g

0

dz′Q̃22(z, z′)
deθ(z′)

dz′
, (5)

where
P(z, z′) = Pp(z − z′) + Pc(z, z′), (6)

Q(z, z′) = Qp(z − z′) + Qc(z, z′), (7)

andQ̃22(z, z′) = − ∫
dz′Q22(z, z′). In Eqs. (4) and (5)

we defined

Ez(z) ≡ Q∆xZ0

πa2
e−jkzez(z), (8)

Eθ(z) ≡ Q∆xZ0

πa2
e−jkzeθ(z). (9)

The kernels denoted byP(u) come from TM modes and
those denoted byQ(u) come from TE modes. We use the
superscriptp for the pipe kernels and the superscriptc for
the cavity kernels.

Our next task is to compute the high frequency (largek)
limit for the kernels after averaging over fast oscillations.
The details are contained in [3]. All kernels vanish foru =
z − z′ ≤ 0. Foru > 0 the leading terms in the highk limit
are:

Pp
11(u) + Qp

11(u) = Pc
11(u) + Qc

11(u)
∼= −(1 + j)

√
k/(4πu), (10)

Qp
12(u) = Qp

21(u) = Qc
12(u) = Qc

21(u)
∼= (1 − j)/

√
4a2πku, (11)

Q̃p
22(u) = Q̃c

22(u) ∼= (1 − j)/
√

πku. (12)

Remarkably, the corresponding pipe and cavity kernels are
identical for largek after smoothing. The same situation
prevailed in our earlier calculation for the smoothed longi-
tudinal coupling impedance at high frequency for a single
obstacle with only TM modes being considered [1]. Thus
the integral equations become:

1 = −(1 + j)

√
k

π

∫ z

0

dz′ez(z′)√
z − z′

+
1 − j

a
√

πk

∫ z

0

dz′eθ(z′)√
z − z′

, (13)

0 =
1 − j

a
√

πk

∫ z

0

dz′ez(z′)√
z − z′

+
2(1 − j)√

πk

∫ z

0

dz′√
z − z′

deθ

dz′
. (14)

From Eq. (14) we see that, for largek,

ez(z′) = −2a
deθ

dz′
. (15)

The term involvingeθ(z′) in Eq. (13) is therefore of order
1/(ka) compared with the term inez(z′) and can conse-
quently be neglected. The solution forez(z′) is then [4]:

ez(z′) ∼= − (1 − j)
2
√

πkz′
. (16)

In order to obtain the impedance, defined in Eq. (3), we use
the equation for the axial electric field in the pipe region

Ez(r, z; k) =
∫ ∞

−∞
dqA(q)

J1(κr)
J1(κa)

e−jqz , (17)

to show that

∂Ez

∂x

∣∣∣
r=0

=
∫ ∞

−∞

κ

2
dqA(q)
J1(κa)

e−jqz . (18)

Here κ2 ≡ k2 − q2 and the contour in the complexq
plane goes below the poles atJ1(κa) = 0 (TM propagating
modes) on the negativeq axis and above the poles on the
positive q axis. Equation (3) then becomes

Zx(k) = − q

Q∆xk

∫ ∞

−∞

κdqA(q)
2J1(κa)

∫ ∞

−∞
dzej(k−q)z . (19)

The integral overz in Eq. (19) is2πδ(q − k), leading to

Zx(k) = −2πA(k)
Q∆xka

=
−1

Q∆xka

∫ g

0

dzEz(z)ejkz . (20)

Finally, by using Eqs. (8) and (16) in Eq. (20), we find

Zx(k)
Z0

=
−1

πka3

∫ g

0

dz′ez(z′) ∼= (1 − j)
a3

√
g

π3k3
. (21)

We note that the high frequency dependence of the trans-
verse impedance for a single cavity arises essentially from
the TM cavity and pipe kernels. Furthermore, we see that

Zx(k)
Z0

∼= 2
ka2

Z‖(k)
Z0

, (22)

whereZ‖(k) is the high frequency limit for the longitudinal
impedance of a single cavity [1], a relation which also ap-
plies to a lossy beam pipe [5]. In fact, in the high-frequency
limit for a single cavity, simple arguments of diffraction
theory can be used to obtain the same factor2/(ka2) as
in Eq. (22) [6]. Here we used a more rigorous treatment
and showed that TE modes give only next order frequency
corrections, ensuring that only TM modes will govern the
high-frequency behavior of the transverse impedance of a
single cavity and providing the factor2/(ka2).
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3 PERIODIC ARRAY OF CAVITIES

We are now ready to extend the calculation of the trans-
verse impedance to a periodic array of identical cavities.
In the geometry of the system considered,g is the length
of each cavity andL is the axial distance (center to center)
between two adjacent cavities.

We obtain the integral equations satisfied by the fields
using the same steps as we followed for the case of a sin-
gle cavity. The only difference is that in doing the field
matching in each cavity one has to take into account the
contributions to the fields coming from all the other cavi-
ties. These contributions determine the appearence of the
coupling kernels in the integral equations. As for the case
of a single cavity we find that in the high frequency limit we
can reduce the original system of two integral equations to
a single equation for the unknown axial component of the
electric fieldez. This integral equation has the same form
as the one in the calculation of the longitudinal impedance
[1]. Therefore, for the transverse impedance of a periodic
structure at high frequency we finally obtain [3]:

Zx(g/L) =
2

ka2
Z‖(g/L). (23)

The problem is then reduced to calculatingZ‖ from the so-
lution of the integral equation forez. Although it was not
explicitly stated in the paper, the final form for the integral
equation in [1] was correct only in the limitg/L � 1, be-
cause of the way the coupling kernels were approximated.
Recently, Yokoya [7] pointed out that one can treat the case
of a generalg/L by retaining an extra term of orderk−1/2

compared with the coupling kernel [1]. The resulting inte-
gral equation can be approximately solved [3], [7] with the
following result for the impedance per periodZ‖(g/L):

Z‖
Z0

=
−jL

πka2

[
1 + (1 − j)

L

a

√
π

kg
λ(g/L)

]−1

, (24)

with

λ(ξ) ∼= 1 +
α0

π
ξ1/2 − α1

3π
ξ3/2 +

13α2

45π
ξ5/2

+
8α2

1

45π2
ξ3 − O(ξ7/2), (25)

whereα0 = ζ(1/2), α1 = ζ(3/2)/2, α2 = 3ζ(5/2)/8,
andζ denotes the Riemann zeta function. In the limitg �
L we haveλ = 1, and one recovers our earlier expression
for the longitudinal impedance [1]. In the caseg/L = 1 it
is possible to obtain an exact analytic result, using diffrac-
tion theory, as was shown by Stupakov [8]. In our notation
Stupakov’s result isλ(1) = −ζ(1/2)/π ∼= 0.464845 [8],
in agreement with Yokoya’s numerical solution [7].

Equations (23)-(25) provide an analytic description of
the transverse and longitudinal impedance at high fre-
quency for an infinite array of periodic cavities. These
expressions are valid whenNL � ka2, whereN is the
number of cavities. Forka2/L ≥ N � 1 there is a tran-
sition to the result valid for a finite number of cavities, and

one needs to use a different expression for the longitudinal
impedance [9].

4 SUMMARY

In this paper we address the question of the transverse cou-
pling impedance at high frequency. The problem is more
complicated than for the longitudinal impedance, since
both TM and TE waveguide modes are present, which re-
quires matching two components of the magnetic field at
the boundary between the waveguide and the obstacle. We
show that, in the high frequency limit, the TM contribution
dominates for a single obstacle, while the TE contribution
must be included in the periodic case. Nevertheless, we
find the same relation between the longitudinal and trans-
verse impedances as exists for the resistive wall impedance
of a beam pipe. Validity of the factor2/(ka2) between the
longitudinal and transverse impedances allows simple esti-
mates of the transverse impedance at high frequency.
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