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Abstract r g

The interest in short bunches in many accelerator applica-
tions requires good understanding of the high frequengy ;
behavior of the interaction between the beam and its en-
vironment. In this paper we report an analytic calculation
for the high frequency limit of the transverse impedance for
both a single and periodic array of cavities in a beam pipe. —_— —

1 INTRODUCTION

a b Q
The acceleration of charged particles in periodic structurgs
leads to wakefields which are capable of interacting ad- A
versely with particles in the same bunch, or in following z

bunches. The conventional method of describing these
limitations in the current that can be accelerated involves Figure 1: The |ay0ut of geometry fora Sing|e Ca\/ity_
the longitudinal and transverse coupling impedances of the
structure. With the increasing use of short bunches, it be-
comes necessary to evaluate these coupling impedancega function of: = w/c. In the limit of smallA, we have
high frequencies (wavelength of the order of the bunch

length). This_ha_s been done for the Io_ngitudinal impedanpe Zo(k) = J /oo dzeik [Em(z; k)
of small periodic obstacles in an azimuthally symmetric QAz J_ o
structure [1], where we have derived an integral equation
: o . . ) — ZoH,(z; _ 1
for the axial electric field at the inner bore radius. In this oty (3 k)};;g (@)

paper we address the corresponding problem for the trans-

verse coupling impedance at high frequency. In particun units of[2/m] (of transverse displacement). Hefg =

lar, we first derive the integral equation for the electricy/t0/€0 = 1207 [2] is the impedance of free space. We
field at the bore radius of the structure and obtain the réhen use

sult for the transverse impedance of a single small obsta- OB, OF; = —jkZoH )

cle at high frequency by way of the high frequency limit 0z Oz Y

of the kernels. The problem is more complicated than io obtain the alternate expression [2]:

was for the longitudinal impedance, since both TM and

TE waveguide modes are present, which requires match- . 1 /°° e OF,

. L (k) = —— dze?"? —= , (3

ing two components of the magnetic field at the boundary QALK J_ 0x lz=0,y=0

between the waveguide and the obstacle. As we shall even-

tually see, however, in the high frequency limit, the TMwhere we use the time dependengg(jwt).

contribution dominates for a single obstacle, but the TE The general technique consists of expanding fields in
contributions must be included in the periodic case. Neveboth the pipe(r < a) and cavity(a < r < b) regions
theless, we find the same relation between the longitudinalto a complete set of functions. At the common interface
and transverse impedances as exists for the resistive wihown on Fig. 1) the fields have to be matched, yielding
impedances of a beam pipe. equations for the expansion coefficients.

We now consider a point chardge traveling in thez-
direction at(x,y) = (A,,0). We start with the definition 2 INTEGRAL EQUATIONS AND

of thexz component of the transverse coupling impedance SOLUTION EOR IMPEDANCE
*\Work supported by the U.S. Department of Energy We first consider a single cavity of radibiand axial length
t fedotov@physics.umd.edu g. Matching of the azimuthal and longitudinal components
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of the magnetic field at the pipe raditis= a for0 < z < ¢ 0 = L1=J [fdde(z)
(see Fig. 1), leads to the integral equations avrk Jo Vz—2
4 z /
. L 20-J) dz_deo (14)
1 = / dz'[P11(2,2") + Q11(z,2")]e=(2") vk Jo Vz—2dz
Og From Eq. (14) we see that, for large
+ [ ), (4) )
0 N — _o,%0
e.(z') = —2a o (15)
B g , , The term involvingey(2’) in Eq. (13) is therefore of order
0 = /O dz'Qa1(z, 2")e;(2') 1/(ka) compared with the term ia.(z’) and can conse-
g  deg(2) quently be neglected. The solution far(z’) is then [4]:
+ dz'Qaa(z,2") PR (5) :
’ ’ er(ehy =~ (16)
where 2Vmkz
P(z,2") =PP(z —2') + Pz, 7), (6) Inorderto obtain the impedance, defined in Eq. (3), we use
the equation for the axial electric field in the pipe region
Qz,2) = Q2 — 2') + Q(2,%), W) N o)
~ 1(RT gz
and Qa3(z,2") = — [dz'Qa2(2,2'). In Egs. (4) and (5) E.(r,2;k) = [m dqAlq) J1(f<aa)e o an
we defined
OALZ to show that
E.(2) = 7-@206—3%:262(2)’ (8) OE, * kdqA(q) _;
Ta —= = ——————e 19, (18)
0z lr=0 oo 2 J1(Ka)
N/
Ey(z) = %6 F2ep(z). (9) Herex? = k2 — ¢ and the contour in the complax

plane goes below the poles.At xa) = 0 (TM propagating
The kernels denoted % (u) come from TM modes and modes) on the negativeaxis and above the poles on the
those denoted b@(u) come from TE modes. We use thepositive q axis. Equation (3) then becomes

superscripp for the pipe kernels and the superscrigor

the cavity kernels. 2ok = — q /oo kdqA(q) /OO dzedk=Dz (19)
Our next task is to compute the high frequency (ldtpe = * QAk | 2J1(ka) J_o

limit for the kernels after averaging over fast oscillations._ . . . .

The details are contained in [3]. All kernels vanishfoe= |1 integral over in Eq. (19) is2rd(q — k), leading to

2z — 2z’ < 0. Foru > 0 the leading terms in the highlimit _ g _
e (k) = —2rAE) / dzE. ()¢l (20)
: QA ka  QAzka J,
Phi(uw) + OF (u) =Prii(u) + Qf; (uw) Finally, by using Egs. (8) and (16) in Eq. (20), we find
& —(1+4+j)Vk/(4mu), (10) Zo(k) -1 gd ) L (1=7) g o1
Zy _ﬁka3/0 o) = a3 T3 k3 (21)
Ta(u) = Q8 (u) = Qfs(u) = Q5 (u) We note that the high frequency dependence of the trans-
~ (1-j)/Via?rku, (11) Verse impedance for a single cavity arises essentially from
the TM cavity and pipe kernels. Furthermore, we see that
Qby(u) = Q5y(u) = (1 — j)/Vrku.  (12) Zo(k) o 2 Z(k) 2
Remarkably, the corresponding pipe and cavity kernels are Zo ka*  Zo

identical for largek after smoothing. The same Situatio"!whereZH(k) is the high frequency limit for the longitudinal
prevailed in our earlier calculation for the smoothed |0”g'impedance of a single cavity [1], a relation which also ap-
tudinal coupling impedance at high frequency for a singlgjies to a lossy beam pipe [5]. In fact, in the high-frequency
obstacle with only TM modes being considered [1]. Thugmit for a single cavity, simple arguments of diffraction

the integral equations become: theory can be used to obtain the same faeitika?) as
L ) in Eq. (22) [6]. Here we used a more rigorous treatment
1 = —(1 +j)\/E/ dz'e;(2") and showed that TE modes give only next order frequency
T Jo Vz—2 corrections, ensuring that only TM modes will govern the
n 1—35 [#dZes(2)) (13) high-frequency behavior of the transverse impedance of a

ik Jo Ve—2" single cavity and providing the factay (ka?).
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3 PERIODIC ARRAY OF CAVITIES one needs to use a different expression for the longitudinal

. impedance [9].
We are now ready to extend the calculation of the trans- P (9]

verse impedance to a periodic array of identical cavities.

In the geometry of the system considereds the length 4 SUMMARY
of each cavity and. is the axial distance (center to centen)n this paper we address the question of the transverse cou-
between two adjacent cavities. pling impedance at high frequency. The problem is more

We obtain the integral equations satisfied by the fieldsomplicated than for the longitudinal impedance, since
using the same steps as we followed for the case of a Siggth TM and TE waveguide modes are present, which re-
gle cavity. The only difference is that in doing the fieldguires matching two components of the magnetic field at
matching in each cavity one has to take into account thie houndary between the waveguide and the obstacle. We
contributions to the fields coming from all the other cavishow that, in the high frequency limit, the TM contribution
ties. These contributions determine the appearence of thgminates for a single obstacle, while the TE contribution
coupling kernels in the integral equations. As for the cas@ust be included in the periodic case. Nevertheless, we
of a single cavity we find that in the high frequency limit wefing the same relation between the longitudinal and trans-
can reduce the original system of two integral equations {@rse impedances as exists for the resistive wall impedance
a single equation for the unknown axial component of thgf 3 heam pipe. Validity of the fact@/(ka?) between the
electric fielde.. This integral equation has the same formongitudinal and transverse impedances allows simple esti-

as the one in the calculation of the longitudinal impedancgates of the transverse impedance at high frequency.
[1]. Therefore, for the transverse impedance of a periodic

structure at high frequency we finally obtain [3]: 5 ACKNOWLEDGMENT
Z.(g/L) = %Z” (g/L). (23) We are grateful to K. Yokoya for sharing his notes with us

and for making several useful comments. We also wish to
The problem is then reduced to calculatiigfrom the so- thank S. Kurennoy for helpful comments.
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