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Abstract

Beam halo formation issues are important for the design of
high current linear ion accelerators. Various mechanisms
can potentially cause beam halo. Some recent studies have
suggested that Coulomb collisions in the beam bunch can
contribute significantly to beam bunch growth and halo de-
velopment in linear accelerators. Despite the general belief
that collisions are not important, it is clear that a rigorous
treatment of this question is needed. In an effort to ex-
plore this issue in detail we have undertaken an analysis of
the effects of Coulomb scattering between ions in a self-
consistent spherical bunch.

1 INTRODUCTION

During the last several years, interest has grown in the de-
sign of high current linear ion accelerators for a variety of
important applications. Since the beam bunch spends a
very short time in a linac, compared with a circular ma-
chine or a storage ring, the general expectation is that
collisions between individual ions will take place on too
long a time scale to be important. However, there have
been some recent numerical studies which suggested that
small angle single Coulomb scattering may not be negli-
gible for spheroidal bunches in a linac. Thus, the concern
has arisen with regard to the possibility that Coulomb col-
lisions between ions may contribute significantly to emit-
tance growth and/or halo formation. It is clear that, because
of the importance of this question for the design of high
current linear ion accelerators, a more rigorous treatment
of the effect of single Coulomb collisions is needed. In an
effort to explore this issue in detail we have undertaken an
analysis of the effects of Coulomb scattering between ions
in a self-consistent [1] spherical bunch.

2 GENERAL CONSIDERATIONS

Our quantitative study of non-stationary distributions [2]
shows that the parameters of halo formation are more or
less the same as those caused by mismatches of an other-
wise self-consistent phase space distribution.

We therefore start with our family of self-consistent,
equipartitioned phase space distributions [1]:

f(r,v) =
{

N(H0 − H)n , H < H0

0 , H > H0

}
, (1)
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where the Hamiltonian is

H(r,v) = mv2/2 + kr2/2 + eΦsc(r), (2)

and use
G(r) ≡ H0 − kr2/2− eΦsc(r), (3)

with k being the smoothed restoring force gradient. We
choose the space charge potentialΦsc(r) which vanishes at
r = ∞, H0 is a constant, the external forces are linear, and
f(r,v) is normalized such that

ρ(r) = Q

∫
dvf(r,v) ,

∫
drρ(r) = Q, (4)

whereQ is the total bunch charge.
The probability per unit time (in the coordinate system

of the bunch) for a Coulomb collision between ions with
velocityv1 andv2, is then

dP

dt
=

∫
dr

∫
dv1f(r,v1)

×
∫

dv2f(r,v2)|v1 − v2|dΩs
dσ

dΩs
, (5)

wheredσ/dΩs is the classical differential Rutherford cross
section.

3 HALO EXTENT

Using Eqs. (1) and (3) we find

ρ(r) = QN

∫ v0

0

4πv2dv[G(r) − mv2/2]n, (6)

wherev2
0 = 2G(r)/m. We then examine the kinematics

of the Coulomb collision [3]. Clearly the ions which travel
to the largest radius before turning back are the ones which
have the largest possible velocity at a givenr and where,
after the collision, one is left at rest and the other travels
radially with all the kinetic energy. Such a collision can
only conserve energy and momentum when the colliding
ion velocities are at90◦ to one another. With the maximum
velocity before the collision given bymv2/2 = G(r), the
maximum energy after the collision is

mv2
max

2
= 2G(r). (7)

The maximum radiusR then satisfies

2G(r) +
kr2

2
+ eΦsc(r) =

kR2

2
+ eΦsc(R), (8)
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wherer < a, R > a. We then have

k(R2 − a2)
2

− eQ

4πε0

(
1
a
− 1

R

)
= G(r). (9)

We proceed further in this analysis forn = −1/2, where

G(r) =
3k

κ2

[
1 − i0(κr)

i0(κa)

]
. (10)

Here

κ2 =
eQ

4πε0
∫ a

0
r2drG(r)

(11)

and

i0(w) =
sinhw

w
. (12)

From Eq. (9) it is clear that outermost particles are those
which start near the bunch center. We then rewrite Eq. (9)
as

u3 +
[
− 12

κ2a2
+

6
κa

(1 + c)
s

− 3
]
u

+ 6(1 − κa
c

s
)/κ2a2 + 2 = 0, (13)

whereu = R/a, s = sinh(κa), c = cosh(κa). For large
κa, Eq. (13) can be easily solved, and we obtain

R − a

a
'

√
3 − 1√

κ2a2 + 15/2

→
√

2(
√

3 − 1)√
15

ηrms
∼= 0.27ηrms, (14)

whereηrms is anrms tune depression [3].
An interesting consequence of Eq. (14) is that the thick-

ness of the shell populated by the scattered ions decreases
as the beam becomes more space charge dominated. We
remind the reader that Eq. (14) was obtained for the self-
consistent equipartitioned distribution withn = −1/2. In
his report [4] on numerical studies for distributions which
were not self-consistent, Pichoff observed a similar depen-
dence on tune depression.

At first glance this thin shell does not resemble our ear-
lier description of a halo [1, 2]. However, the shell thick-
ness given by Eq. (14) was obtained for an equipartitioned
beam. We now use Pichoff’s definition of the equipartition-
ing factorχ = vz/vx. The maximum possible velocity af-
ter the collision can be rewritten asmv2

max/2 = (1+χ2)G,
and we obtain for the shell thickness

R − a

a
'

√
1 + 2χ2 − 1√

15/2
ηrms. (15)

Clearly, when the beam is non-equipartitioned or the beam
with the stationary distribution is rms mismatched, the
thickness of the shell can be significantly larger, depend-
ing on the equipartitioning factor. Such an increased shell
thickness can then easily resemble the typical halo extent
[1, 2]. Thus, in order to understand whether scattering can

contribute to the halo formation we need to calculate the
rate at which this shell becomes populated.

We note that solutions given by Eqs. (14)-(15) can
be used with good accuracy only for large values ofκa
(κa > 4) corresponding to tune depressionsη < 0.6,
which covers our range of interest [5]. Forη ≥ 0.6 a better
solution of Eq. (13) should be used. For completeness, we
present below some values based on numerical solution of
Eq. (13). For equipartitioned beam (χ = 1), the shell ex-
tent becomesR/a = 1.41, 1.37, 1.32, 1.27, 1.22 forη =
1, 0.9, 0.8, 0.7, 0.6, respectively. Similar values for the
shell thickness were obtained by Pichoff for the distribution
functions used [4]. In fact, in the limit of zero space-charge,
the shell thickness becomes independent of the distribution,
and, from Eq. (8), is simply given byR/a =

√
1 + χ2 (see

also [4]).

4 COULOMB SCATTERING RATE

The heart of our calculation is the evaluation [3] of the 11
dimensional integral in Eq. (5) over the range ofr, v1,
v2, Ωs which enables particles to leave the bunch. The de-
tailed analyses are presented in [3]. Here we just present
an order of magnitude estimate of Eq. (5), assuming a
spherical bunch of radiusa. We use|v1| ∼ |v2| ∼ v and∫

dvf(r,v) ∼ 1/a3 and assume all integrals are finite to
obtain the estimate

dP

cdt
∼ r2

p

ε3N
, (16)

where the classical radius of the ion is given by

rp =
e2

4πε0mc2
, (17)

and where the (projected) normalized emittance of the
bunch is

εN ' av/c. (18)

For a proton bunch withrp = 1.5×10−18 [m] andεN '
1 × 10−6 [m rad], Eq. (16) yields

dP

cdt
∼ 10−15/km, (19)

clearly negligible for a linac.
The problem with the foregoing estimate is that it ignores

the divergence of the Coulomb cross section atθs = 0, as
well as the possible divergence of the distributionf(r,v)
nearmv2/2 = G(r) for values ofn < 0 in Eq. (1). We
address these issues and present evaluation of the 11 di-
mensional integral given by Eq. (5) in [3].

After rigorous calculation [3] we finally find that the
fraction of ions which leave the beam (and form a spher-
ical layer around the bunch) per unit length is

dP

cdt
∼




r2
p/ε3N , n > 0

(r2
p/ε3N)`n(ε2N/rpa) , n = 0

(r2
p/ε3N)(ε2N/rpa)n , −1 < n < 0




,

(20)
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where, for the distributions with0 ≥ n > −1, we assume
that the Coulomb force between ions is screened at the De-
bye lengthλD. Usingrp = 1.5 × 10−18 [m], εN

∼= 10−6

[m rad] anda ∼= 10−2 [m], we then have

dP

cdt
∼




10−15/km , n > 0
10−14/km , n = 0
10−11/km , n = −.5
10−8/km , n = −.9




. (21)

5 EFFECT OF MULTIPLE COLLISIONS

The shortcoming of the approach in Section 4 is that it
does not take into account the effect of a large number of
small scattering angle Coulomb collisions. For this purpose
we also examine the evolution of the phase space distribu-
tion in time due to Coulomb collisions by starting with the
Boltzmann equation for an otherwise equipartitioned beam
bunch. For our self-consistent distribution, the Boltzmann
equation, which accounts for the scattering of particles into
and out of regions of velocity space, can be written as

∂f(u1)
∂t

= KnD

∫
du2|u1 − u2|

×
∫

dΩs

[
dσ

dΩs
(u′

1,u
′
2 → u1,u2)f(u′

1)f(u′
2)

− dσ

dΩs
(u1,u2 → u′

1,u
′
2)f(u1)f(u2)

]
. (22)

Here nD is the ion particle density, anddσ/dΩs is the
Coulomb scattering cross section for the initial and final
states. Apart from constants, which are absorbed inK,
f(u) is (1− u2)n, where we renormalized all velocities as
v2 = [2G(r)/m]u2.

We now calculate the rate of change of〈u2
1〉 and 〈u4

1〉
and find [3] thatd〈u2

1〉/dt = 0 and that the lowest non-
vanishing power occurs ford〈u4

1〉/dt:

d〈u4
1〉

dt
=

4π2

18
KnD

[
`n

(
1

θmin

)
− 1

]
. (23)

It is possible to calculate the rate of change of the ex-
pectation value of(1 − u2

1)n for all values of n, with the
same result as in Eq. (23), except for a numerical factor of
order 1. In fact, the results obtained suggest the expected
rounding of then = 0 distribution nearu = 1.

We therefore expect that multiple scattering simply leads
to a generalization of our previous result in Section 4 with
logarithmic behavior:

1
c

dP

dt
∼ r2

p

ε3N
`n

(
1

θD

)
, (24)

where θD is minimum angle corresponding to Debye
length impact parameter. If so, the rate of scattering due
to multiple collisions is only slightly higher than the rate
for single encounters for the distributions withn > 0. For
the same parameters as those used in Section 4 the rate be-
comes clearly negligible withdP/cdt ∼ 10−14/km.

6 SUMMARY AND CONCLUSIONS

In Sections 3-4 we have calculated the effect of single
Coulomb scattering of a self-consistent 6-D distribution for
a spherical beam bunch. In this calculation we find:

• Single collisions are capable of populating a thin
spherical shell around the beam bunch.

• When the beam is non-equipartitioned or the beam
with the stationary distribution is rms mismatched, the
thickness of the shell can be significantly larger, de-
pending on the equipartitioning factor.

• For the relatively singular distribution withn =
−1/2, a bunch with a normalized emittanceεN ∼
10−6 [m rad] and a radius of 1 [cm] will populate
the shell with a probability of10−11 per kilometer of
linac.

• For distributions withn > 0, this rate of population is
further reduced by a factor10−4.

Our conclusion is that effect of single Coulomb colli-
sions on halo development in high current ion linear accel-
erators is not important.

In Section 5 we related our analysis to diffusion caused
by many small angle Coulomb collisions, with the con-
clusion that the effect of multiple Coulomb collisions in
halo development in high current ion accelerators is also
expected not to be important.
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