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Abstract

The Frequency Map analysis is applied to the Particle-core
model of an intense bunched beam in a focusing channel
with cylindrical symmetry. The coupled longitudinal-radial
motion is analyzed.

1 INTRODUCTION

The control of beam losses down to a very small percentage
is one of the main challenges for the new generation of high
power linacs. These losses are associated with the presence
of a beam halo, populated by very few particles but with a
radius significantly larger than the beam rms (root mean
square) radius up to the bore hole. In previous papers we
have applied the Frequency Map Analysis (FMA) [1][2] to
the 2D case of a mismatched beam propagating in a FODO
channel[3]; in this case it exists a self-consistent solution of
the Vlasov-Poisson problem, the KV distribution, and we
studied how the non linear resonances, driven by the space
charge, can push a test particle to large amplitudes. The
importance of the envelope oscillations and the advantage
of a careful choice of the working point result clearly from
this analysis.

Unfortunately in a linac the particle dynamics is intrin-
sically 3D, since the three tunes are close each other. The
space charge can be in this case estimated assuming an el-
lipsoid uniformly populated, even if this does not corre-
spond to a regular self-consistent solution of Vlasov prob-
lem. In this paper we move a first step toward the 3D prob-
lem, by considering a beam moving in a solenoid chan-
nel, interrupted by an RF gap (working with�90 deg syn-
chronous phase). The envelope periodic solution (Fig. 1)
and the three envelope modes are calculated. This prob-
lem is very similar to a linac with smooth quadrupole fo-
cusing and same focusing strength in the two transverse
planes; the understanding of the coupled longitudinal and
transverse motion in this case is important for the halo for-
mation problem. We therefore analyzed the 2D motion of
particles without angular momentum respect to beam axis;
in this way we could apply the FMA and the stability crite-
ria elaborated for the transverse case.

The extension of the FMA to the complete 3D case will
be our next step.

2 PARTICLE-CORE MODEL

We assume that the particles are uniformly distributed into
ellipsoidal bunches, defined by the equation
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Figure 1: FODO Period witha1 = a2

where(x1; x2) are the transverse coordinates andx3 is the
longitudinal coordinate. The semi axisai are functions of
positions. We compute the potential of the charge distri-
bution according to
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whereN is the total number of particle and the variable
� is set equal to 0 if the point(x1; x2; x3) is internal to
the ellipsoid (1), and is otherwise defined as the positive
solution of the equation
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In order to simplify the problem we assume a rotational
symmetry (a1 = a2). In such a case the integral (2) can
be computed using elementary functions and the transverse
and the longitudinal electric fields determine the single par-
ticle equations: (j = 1; 2)
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where� = 3Ne2=4��0m3v2,  and� are relativistic fac-
tors, � is the wavelength and the0 denotes the derivative
with respect tos , p =
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is the form factor defined forp 2 IR+ by extending the log
and the square root functions to complex values. Sinceaj
depends ons, the equations (4) are time-dependent canon-
ical equations. Therefore in order to integrate eqs. (4) we
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have solved the envelope equations which follow from the
rms envelope equations using the relationshx2i i = a2i =5
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where�i = 5

q
hx2i ihx0i2i � hxix0ii2 i = 1; 2; 3 are the

emittances. If we choose the periodic solution of the enve-
lope equations, then it is possible to introduce the Poincar`e
map for the system (4) (matched case); otherwise in the
generic caseai(s) are only quasi-periodic and the Poincar`e
map cannot be used to plot the phase space of the test-
particle.

3 ENVELOPE MODES

If the deviations�i with i = 1; 2; 3 from the periodic en-
velope are small, they can be calculated from the lineariza-
tion of (6), giving rise to envelope modes that enter single
particle dynamics. In particular if the focusing is smooth
(�ihh1=4), one can directly calculate the equilibrium en-

velopesai =
q
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, and the zero space charge tunes:
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The envelope modes are solution of the system:
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where in the casea1 = a2, the matrixHil has the form:
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with f 0 = df(p)=dp. The eigen-frequencies are:
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and the corresponding eigen-vectors are:
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This is the mode mixing angle. In particular, if radial and
longitudinal focusing strength are equal, the mixing an-
gle is �=4. On the contrary if the difference in focusing
strength is large the mixing angle tends to zero. The lattices
of practical interest are smooth enough so that the three
modes calculated in smooth approximation can be recog-
nized.

For numerical simulations we have chosen a lattice with
a1 = a2 and with�1 = �3 = 10�6 m, K1 = K2 = 1:5
m�2, K3 = 0:9 m�2, L = 3�� = 1 m, � = 2 � 10�9
m. In this case the frequencies in smooth approximation
are:�01 = 0:16; �03 = 0:16; �1 = 0:13; �3 = 0:12 and the
envelope modes are:�0 = 0:27; �� = 0:26; �+ = 0:30
with a mix angle of� = 0:51 rad.
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Figure 2: Fourier analysis of the mismatched case;
(n1; n2; n3; n4) corresponds ton1�1 + n2�3 + n3�+ +
n4�� = 0. Numerically�1 = :1247; �3 = :1169; �+ =
:3077; �� = :2657

4 FREQUENCY-MAP ANALYSIS

The FM analysis is a useful tool to represent the phase
space of a symplectic map of 2 or more degrees of freedom,
which can be applied also to quasi-periodic time dependent
maps. The basic idea is to compute the main frequencies
associated to the invariant tori (regular orbits) and to study
the regularity of the map (i.e. the FM) between the space
of the invariant tori and the frequency space. According to
the K.A.M. theory, in the regions of the phase space mostly
filled by regular orbits the main frequencies associated to
the invariant tori change smoothly from one torus to an-
other, whereas in the resonant regions the frequencies are
locked to the resonant values.
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Figure 3: FMA in the matched and mismatched case: a�1 = 0:2a1 of mismatch is inserted in the envelope solutions:
the low order resonances are indicated and the appearance of a chaotic region due to resonances overlapping for the
mismatched case is clear.

In the case of the system (4), we numerically compute
the transfer map for the FODO line and for a given initial
condition we consider a fixed number of iterations. Then
we project the orbit on the planes(xi; x

0

i
) i = 1; 2; 3 and we

compute the betatronic and the synchrotronic frequencies
by using an algorithm based on the Hanning filter.

In the figure 2 we show the FFT of a regular orbit for
a test particle projected in a transverse plane when the
beam envelopes are20% mismatched. Even if the Fourier
spectrum is very rich, due to the appearance of the integer
combinations between the betatronic and synchrotronic fre-
quencies and the envelope frequencies, we observe that the
highest peak still corresponds to the betatronic frequency.
This is in general true for the orbits of the system (4).

In order to study the regularity of the FM, we consider an
uniform grid of initial conditions in the(x1 = x2; x3) plane
(fig. 4). In the regular regions the initial grid of points is
only smoothly deformed by the FM (fig. 3). In the resonant
regions the the points are mapped in a resonant line so that
a dense straight line of points at the center of an empty
channel is shown in the frequency space. In the chaotic
regions the results of the FM changes strongly from one
point to another and the fuzzy cloud of points appears.

5 CONCLUSION

We have shown the possibility to use the FMA the
longitudinal-radial coupled motion for high intensity
bunched beam. The FMA provides information on the reg-
ular, resonant and chaotic regions in the phase space and al-
lows to define a dynamic aperture by using the border of the
regular regions around the beam core. In the mismatched
case the FM analysis for the P-C model points out the role
of the resonances between the single particle and the enve-

lope frequencies for the stability of the orbits, through the
mechanism of resonance overlapping.
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Figure 4: Initial condition corresponding to mismatched
case (fig. 3 right side). The initial conditions correspond-
ing to the two overlapping resonances(2; 0;�1; 0) and
(0; 2; 0;�1) are indicated with thicker markers
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