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Abstract

In this paper we present a study of beam halo based on
a three-dimensional particle-core model of an ellipsoidal
bunched beam in a constant focusing channel. For an
initially mismatched beam, three linear envelope modes
– a high frequency mode, a low frequency mode and a
quadrupole mode – are identified. Stroboscopic plots are
obtained for particle motion in the three modes. With
higher focusing strength ratio, a 1:2 transverse parametric
resonance between the test particle and core oscillation is
observed for all three modes. The particle-high mode res-
onance has the largest amplitude and presents potentially
the most dangerous beam halo in machine design and op-
eration. For the longitudinal dynamics of a test particle,
a 1:2 resonance is observed only between the particle and
high mode oscillation, which suggests that the particle-high
mode resonance will also be responsible for longitudinal
beam halo formation.

1 INTRODUCTION

The physics of beam halo has been extensively studied
through analytical theory and multi-particle simulations[1,
2, 3, 4, 5, 6, 7, 8, 9, 10]. In these studies, the so-called
particle-core model has been frequently used. This model
provides insight into the essential mechanism of halo for-
mation and enables estimates of the extent of beam halo.
In this paper, we will use a three-dimensional particle-core
model with a nonlinear rf field to study beam halo forma-
tion in a mismatched ellipsoidal bunched beam. Three en-
velope modes will be identified and their effects on the for-
mation of beam halo through a parametric resonance with
test particles will also be studied for the given physical pa-
rameters.

Bunch Current (A) 0.1
Protron Energy (MeV) 471.4

Synchronous Phase (degrees) -30
rf Frequency (M Hz) 700

Accelerating gradient (MV/m) 5.246
Transverse Phase Advance (degrees) 81

Lattice Period (m) 8.54
Transverse RMS Emittance (π-mm-mrad) 0.2319

Longitudinal RMS Emittance (π-deg-MeV) 0.42

The physical parameters of the beam and the accelera-
tor are given in Table 1[11]. The organization of this paper
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is as follows: the particle-core model is described in Sec-
tion 2, the linear envelope modes are discussed in Section 3,
the test particle dynamics under three envelope modes is
presented in Section 4, and the conclusions are drawn in
Section 5.

2 THREE-DIMENSIONAL
PARTICLE-CORE MODEL

In the three-dimensional particle-core model, the beam
consists of a core and test particles. The core, which con-
tains most particles, is modeled by the rms envelope equa-
tions. The test particles contain a small fraction of the
beam and are subject to the effects of external forces and
space charge forces due to the core. The effects of test
particles on the core and the mutual Coulomb interactions
among test particles are neglected. The bunched core is as-
sumed to have a uniform charge density distribution. Under
the smooth approximation, the envelope equations for the
bunched beam including nonlinear rf focusing are:
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where the semi-axesri are related to the RMS beam sizes
ai by ri =

√
5ai, ei = rx, ry , γrz (i = x, y, z), and

C = 1
2

3
4πε0

q
mc2

I
frf β2γ2 . Here,ε0 is the vacuum perme-

ability, q is the charge,mc2 is the rest energy of the par-
ticles, c is the vacuum light speed,I is the beam average
current,frf is the rf bunch frequency,β = v/c, v is the
bunch speed, andγ = 1/

√
1 − β2. The quantitieskx0 and

ky0 are the transverse betatron wave numbers at zero cur-
rent, which are defined aski0 = σi0/L, i = x, y, under
the smooth approximation for a periodic quadrupole fo-
cusing element. Here,σi0 is the zero-current transverse
phase advance per focusing periodL. The longitudinal
synchrotron wave number at zero current,kz0, is defined
askz0 =

√
2πqE0Tsin(−φs)/γ3β3mc2λ, whereE0T is

the accelerating gradient,φs is the synchronous phase, and
λ is the rf wavelength. The functionf(rz) in the envelope
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equation is a nonlinear rf focusing factor defined in Ref. 9.
In the above envelope equations, we have used a continu-
ous sinusoidal wave to represent the average effect of the
synchronous rf space harmonics in the rf gap and neglected
the acceleration of the rf field. The emittances,εx, εy, and
εz, are five times the corresponding RMS emittances.

The equations of motion for a test particle in the presence
of a uniformly charged core and external focusing fields are

x′′ + k2
x0x − Ix(rx, ry, rz , s)x = 0 (5)

y′′ + k2
y0y − Iy(rx, ry, rz, s)y = 0 (6)

∆z′′ + kξ(cos(kη∆z + φs) − cos(φs))
−Iz(rx, ry, rz , s)∆z = 0 (7)

wherekξ = qE0T/mc2β2γ3, and the parameters is zero
for a particle inside the core and is determined from the
root of the equation

x2

r2
x + s

+
y2

r2
y + s

+
∆z2

r2
z + s

= 1 (8)

for a particle outside the core. These coupled nonlinear or-
dinary differential equations are solved numerically using
a leap-frog algorithm.

3 LINEAR ENVELOPE MODES

The steady state solution of the envelope equations has
three components which define the stationary core size. For
a mismatched beam three linear eigenmodes of the core en-
velope will be excited. From linear perturbation theory,
we can find the eigenmodes of a mismatched core oscilla-
tion. For the physical parameters given in Table 1, we get
the normalized wave number1.945 for the high frequency
mode,1.641 for the low frequency mode, and1.456 for the
quadrupole mode.

To investigate the possible resonance between the test
particle and the mismatched core oscillation, we calculated
the evolution of the ratio of the possible test particle wave
numbers to the mismatched mode wave number as a func-
tion of current with all the other physical parameters given
in the Table 1 fixed. The results for the transverse betatron
motion is given in Fig. 1. It shows that a 1:2 resonance be-
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Figure 1: The ratio of particle betatron wave number to
mode wave number as a function current

tween the test particle and low mode and quadrupole mode
is always excited. For the high mode, the 1:2 resonance
is excited when the current exceeds40 mA. At a current
of 100 mA, as in the present APT design, the 1:2 reso-
nance between the betatron motion of test particles and all
three mismatch-modes is excited. Fig. 2 shows the evolu-
tion of the ratio between the wave number of the particle
synchrotron motion and the wave number of the high mode
and low mode. Here, the 1:2 resonance between the test
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Figure 2: The ratio of particle synchrotron wave number to
mode wave number as a function current

particle and high mode is excited with current greater than
60 mA. The 1:2 resonance between the particle and the
low mode is only excited with a current greater than230
mA.

4 TEST PARTICLE DYNAMICS UNDER
THREE ENVELOPE MODES

For the mismatched core, three linear modes can be excited.
When the ratio of the test particle wave number to the core
envelope mode wave number is rational, the resonance be-
tween the test particle and core will be excited. Among
these resonances, the 1:2 resonance is what we are most in-
terested in. This is because this low order resonance will
have the large oscillation amplitude and is generally be-
lieved to be responsible for the presence of beam halo. To
understand the potential effects of these envelope modes on
the test particle dynamics and beam halo formation, we use
stroboscopic map to study the test particle dynamics with
only one envelope mode excited each time. Fig. 3 (a) shows
the stroboscopic plot of test particle dynamics in thex−px

plane under high mode envelope oscillation with20% ini-
tial transverse mismatch. Fig. 3 (b) shows a similar plot of
test particle dynamics in thex − px plane under the low
mode. Fig. 3 (c) shows the same plot for the quadrupole
envelope oscillation. The peanut structure in thex − px

plane suggests that the 1:2 resonance between the test par-
ticles and the core envelope oscillation could be excited
for all three modes. In Fig. 4 (a) and (b), we show the stro-
boscopic plots of the resonance between the synchrotron
particle motion and the high envelope mode and low enve-
lope mode in the longitudinal∆z−∆pz plane. In this case,
the 1:2 resonance is present only for the high mode in the
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Figure 3: Stroboscopic plot ofx − px for high mode, low
mode and quadrupole mode with 0.2 mismatch.

longitudinal phase space.

5 CONCLUSIONS

In the above study, we have used a three-dimensional
particle-core model to study beam halo in a mismatched
ellipsoidal bunched beam. Three linear envelope modes, a
high frequency mode, a low mode and quadrupole mode,
are identified. The 1:2 transverse resonances are present
between the test particle and all three envelope modes.
Among the three transverse particle-core resonances, the
high mode presents the greatest potential danger for the
machine design and operation due to its large transverse
resonance amplitude. The high mode resonance also dom-
inates the longitudinal 1:2 resonance which contributes to
the formation of longitudinal beam halo.
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Figure 4: Stroboscopic plot of∆z − ∆pz for high mode
and low mode with 0.2 mismatch.
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