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Abstract

This work is an attempt to explore possible techniques
to graphically display the dynamics of halo particles
for a mismatched beam in a periodic-focusing lattice.
It is found that by using the particle-core model
and a suitable change of the phase-space variables,
stroboscopic plots similar to those made for the
uniform-focusing channel can be created by strobing
at the frequency of the core oscillation. This
method does not require any smooth approximation
to reduce the flutter due to the periodic focusing,
and it is not limited by the constraint that the
core-oscillation frequency has to be a subharmonic
of the focusing frequency. The discussion will cover
the applications to both the axisymmetric and the
quadrupole-focusing channels. It is also found that,
similar to the continuous-focusing system, the motion
of halo particles, although focused by the externally
applied periodic field, is strongly influenced by a
parametric resonance.

1 INTRODUCTION

The particle-core model has successfully explained
the dynamics of particles in the beam halo of a
mismatched beam propagating through a uniform-
focusing channel.[1-12] The simplicity of the model
makes it possible to mathematically analyze the
motion of a particle in the beam halo and provides
a graphic picture using the stroboscopic plot made
on the phase plane of a test particle. However,
when attempting to apply the same model and
method to a beam propagating through a periodic-
focusing channel, one encounters difficulties both in
mathematical analyses and in making the stroboscopic
plots. The main cause of these difficulties is the flutter
in the beam envelope and the particle orbit introduced
by the varying focusing field.

In this paper, we will show that by using
appropriate phase-space variables and by strobing at
the frequency of the core oscillation, the flutter due to
the periodic focusing can be greatly reduced. This
method works best when the beam current is not
very high, but it is also applicable to a wide range
of parameter values. We will first introduce the new
phase-space variables; then we will present the method
and discuss the application of this new approach to
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a quadrupole-focussing system. Numerical examples
will be given for a core with a Kapchinskij-Vladmirskij
(KV) distribution of beam particles. The emphasis
in this paper is to introduce the method. More
studies using this approach will be reported in other
publications.

2 THE PARTICLE-CORE MODEL

We consider a theoretical model which has a test
particle and a continuous beam (the core) propagating
in a periodic-focusing channel. We consider a core with
a KV distribution of particles. The linear transverse
focusing force is assumed to vary in the axial direction
(the z-direction) according to GF (kz) where G is
the maximal gradient of the focusing (or defocusing)
strength, F (kz) is a periodic function of z, and k is
the wave-number of the periodic-focusing system. The
maximum of |F (kz)| is assumed to be one.

We consider the axisymmetric focusing case first.
Using the variable τ = kz, the equations of motion for
the beam envelope and the test particle are:

d2X

dτ2
+ Q2XF (τ) − η

X
− 1

X3
= 0 , (1)

and

d2x

dτ2
−L2

x3
+Q2xF (τ) =

{
ηx/X2 , for x ≤ X ,
η/x , for x > X ,

(2)

respectively, where x = xr

√
k/ε, X = Xr

√
k/ε, xr is

the transverse displacement of the particle from the
symmetry-axis of the beam, Xr is the beam envelope,
Q2 = qG/(m0γv

2k2), η = qI/(2πε0m0γ
3v3kε), and

L = Lr/(m0γvε); q, m0, and Lr are the charge, the
rest mass, and the angular momentum of the test
particle, respectively; γ is the relativistic mass factor,
v is the axial speed of beam particles, I is the beam
current, ε0 is the permittivity of free space, and ε is
the unnormalized total beam emittance.

We now introduce a set of new variables defined by

u = x/X , (3)

w = X2(du/dτ) = X(dx/dτ) − x(dX/dτ) , (4)

ue = Xm/X , (5)
and

we = X2(due/dτ) = X(dXm/dτ)−Xm(dX/dτ) , (6)

where the subscript m is for a matched core. Rewriting
Eqs. (1) and (2) using these new variables, we find that
these equations then depend explicitly on X instead
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of F (kz). Results from both numerical experiments
(see Fig. 1 below) and perturbation calculations show
that the flutter in u and w is smaller than that in
x and dx/dτ . One can also prove that the change
of variables from (x, dx/dτ) to (u,w) is a canonical
transformation, and for particles inside the phase-
space ellipse of the beam core, the new Hamiltonian
is a constant of motion with respect to the time s
(defined by ds = dτ/X2). For particles outside the
ellipse, the Hamiltonian is time-dependent and is non-
integrable.

The proposed approach here is to study the
particle dynamics in the phase space of (u,w) and to
make the stroboscopic plot by taking snapshots of the
particle’s phase space at a certain fixed value, say,
the maxima or the minima, of ue. Numerical results
have shown that the oscillation frequency of ue is not
constant in the periodic-focusing case, and strobing at
constant period creates larger spread of points in the
stroboscopic plots. Note that in Eqs. (3) and (4), one
can also choose to normalize to Xm in place of X to
minimize the flutter in u and w.

In quadrupole-focussing channels, the equations
of the beam envelope and particle motion in the x-
direction are

d2X

dτ2
+ Q2XF (τ) − 2η̂

X + Y
− εx

2

X3
= 0 , (7)

and
d2x

dτ2
+ Q2xF (τ) =

2η̂x
Ξx(Ξx + Ξy)

, (8)

respectively, where X = Xr

√
k, Y = Yr

√
k, Xr and

Yr are the beam envelopes in the x- and y-directions,
respectively, x = xr

√
k, xr is the displacement of the

beam particle in the x-direction from the beam axis,
η̂ = qI/(2πε0m0γ

3v3k), εx is the beam emittance in
the x-direction, Ξx =

√
X2 + ξ, Ξy =

√
Y 2 + ξ, ξ = 0

when the particle is inside the beam, and ξ is given by
the solution of the equation (x/Ξx)2 + (y/Ξy)2 = 1,
when the particle is exterior to the beam, y = yr

√
k,

and yr is the excursion of the beam particle in the y-
direction from the beam axis. The equations for the
beam envelope and particle motion in the y-direction
are similar. To generalize our method developed
for axisymmetric systems to a quadrupole-focussing
system, one can use the variables defined according
to ux = x/X, wx = X(dx/dτ) − x(dX/dτ), uex =
Xm/X, wex = X(dXm/dτ)−Xm(dX/dτ), and similar
definitions for the y-direction variables. Since both
the beam envelope and the test particle now have two
degrees of freedom, only the stroboscopic plots made
for some special cases can be deciphered easily. Thus,
we have to consider the x- and y-motion of the particle
separately by setting one of the coordinates to zero,
e.g. y = 0 and dy/dτ = 0. Besides, in addition to
the breathing mode, the beam envelope can now also

oscillate in a quadrupole mode. Since the frequencies
of these two modes are very close, even when the test
particle is limited to have only one degree of freedom,
it still may resonate with either one or a combination
of these two envelope modes.

3 NUMERICAL EXAMPLES

Figure 1 presents an example of a periodic-focusing
channel showing that the flutter is less in u than in x .
The case studied is an axisymmetric focusing channel
with F (τ) = cos τ , and Q2 = 0.31966. At zero beam
current, the betatron phase advance of a beam particle
is 90◦ per period. At full beam current, η = 0.206
corresponding to a depressed phase advance of 60◦

per period for particles inside of the matched core.
The initial values are: u = 1.23491, X = 3.34883,
ue = 1/0.9, w = dX/dτ = 0, and Lr = 0.
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Fig. 1. The orbit x and the quantity u of a particle
in a mismatched beam. The parameter values are
described in the text.
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Fig. 2. The stroboscopic plot of the particle’s position
on the phase plane of u and w, where the same
parameter values considered in Fig. 1 were used in
the computation.

Figure 2 shows a typical stroboscopic plot for
one particle constructed by strobing at every local
minimum of ue, where the same focusing channel and
beam conditions in Fig. 1 are considered. The initial
position of the test particle is (u,w) = (1.28776, 0) in
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the phase space. In the figure, we see points scattered
near an invariant curve in the Poincaré plot for the
smoothed uniform-focusing channel. Figure 2 suggests
that in this particular case, the averaged particle
motion is in resonance with the core oscillation, and
the orbit of the particle could be quasi-periodic or
almost-periodic. The scattering of points is a general
feature for particles outside the phase-space ellipse of
the beam core. This is because a stroboscopic plot
made for a particle in the periodic-focusing system is
actually the projection of a higher dimensional “plot”
onto the two-dimensional plane.[13] As the particle
approaches toward to the beam ellipse, the dispersion
of the strobed points decreases. For a particle inside
the phase-space ellipse of the core, the strobed points
fall exactly on an invariant circle as expected.
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Fig. 3. Stroboscopic plot showing the resonance of
a halo particle with the breathing mode oscillation of
the beam envelope in a quadrupole-focusing channel.
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Fig. 4. Stroboscopic plot showing the resonance of a
halo particle with the quadrupole mode oscillation of
the beam envelope in a quadrupole-focusing channel.

Examples of stroboscopic plots for a quadrupole-
focusing channel are shown in Figs. 3 and 4 for a
particle in resonance with the breathing mode and
the quadrupole mode of the envelope oscillation,
respectively. The focusing and the beam parameters
considered in these examples are: F (τ) = cos(τ),
εx = εy = ε = 1, Q2 = 3.198, and η̂/ε = 0.2502. These

parameter values correspond to a tune depression from
90◦ to 70◦ for a particles inside the matched beam.
The initial conditions used are: uex = uey = 0.9,
ux ≈ 1.26004, for Fig. 3, and uex = 0.9, uey = 1.1,
ux ≈ 1.08235, for Fig. 4; wex = wey = wx = uy =
wy = 0 for both figures.

4 CONCLUSIONS

A new method has been developed to use the
particle-core model for studying the dynamics of halo
particles in a mismatched continuous-beam propaga-
ting through a periodic-focusing channel. It was
shown that by applying appropriate transformations
of phase-space variables and by strobing at the
frequency of the core oscillation, one is able to create
stroboscopic plots similar to the Poincaré plots made
for particles in a uniform-focusing channel. This
method is applicable to a wide range of parameter
values without using any smooth approximation, and
it is not limited by the constraint that the frequency of
core oscillation must be commensurable with that of
the focusing lattice. Numerical examples were given to
illustrate the method by considering a beam with a KV
distribution and an axisymmetric cosine transverse-
focusing force. We have discussed the possibility
of extending this method to some limited cases in
periodic quadrupole-focusing systems. It was also
shown that, in spite of the complications brought in
by the non-linear oscillations of the system, the motion
of a halo particle is still strongly influenced by the re-
sonance between motions of the particle and the core.
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