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Abstract
Nonlinear dynamics deals with parametric resonances and
diffusion, which are usually beam-intensity independent
and rely on a particle Hamiltonian. Collective instabilities
deal with beam coherent motion, where the Vlasov equa-
tion is frequently used in conjunction with a beam-intensity
dependent Hamiltonian. We address the questions: Are the
two descriptions the same? Are collective instabilities the
results of encountering parametric resonances whose driv-
ing force is intensity dependent? The space-charge domi-
nated beam governed by the Kapchinskij-Vladimirskij (K-
V) envelope equation [1] is used as an example.

1 INTRODUCTION
Traditionally, the thresholds of collective instabilities are
obtained by solving the Vlasov equation, the dynamics
of which comes from a wakefield-dependent Hamiltonian.
The unperturbed beam distribution is computed using the
unperturbed part of the Hamiltonian H0, which takes care
of the mean field and potential-well distortion. The pertur-
bation distribution is obtained by solving the Vlasov equa-
tion that involves the perturbation Hamiltonian ∆H1. The
Vlasov equation is often linearized so that the modes of
collective motion can be described by a set of orthonor-
mal eigenfunctions and the corresponding complex eigen-
values give the initial growth rates. ∆H1 may have a time-
independent component, for example, the part involving the
nonlinear magnetic fields, that gives rise to the dynamical
aperture limitation. It may also have a time-dependent com-
ponent, which includes the effects of wakefields and pro-
duces coherent motion of beam particles. The harmonic
content of the wakefields depends on the structure of ac-
celerator components. If one of the resonant frequencies of
the wakefields is equal to a fractional multiple of the unper-
turbed tune of H0, a resonance is encountered and coherent
particle motion is introduced. This may result in a runaway
situation such that collective instability is induced.

Experimental measurements indicate that a small time
dependent perturbation can create resonance islands in
the longitudinal or transverse phase space and profoundly
change the bunch structure [2]. For example, a modulating
transverse dipole field close to the synchrotron frequency
can split up a bunch into beamlets. Although these phe-
nomena are driven by beam-intensity independent sources,
they can also be driven by the space-charge force and/or
the wakefields of the beam which are intensity dependent.
Once perturbed, the new bunch structure can further en-
hance the wakefields inducing even more perturbation to
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the circulating beam. Experimental observation of hystere-
sis in collective beam instabilities seems to indicate that res-
onance islands have been generated by the wakefields.

For example, the Keil-Schnell criterion [3] of longitudi-
nal microwave instability can be derived from the concept
of bunching buckets, or islands, created by the perturbing
wakefields. Particles in the beam will execute synchrotron
motion inside these buckets leading to growth in the mo-
mentum spread of the beam. In fact, the collective growth
rate is exactly equal to the angular synchrotron frequency
inside these buckets. If the momentum spread of the beam
is much larger than the bucket height, only a small fraction
of the particles in the beam will be affected and collective
instabilitieswill not occur. This mechanism has been called
Landau damping.

As a result, we believe that the collective instabilities of
a beam can also be tackled from a particle-beam nonlinear-
dynamics approach, with collective instabilities occurring
when the beam particles are either trapped in resonance is-
lands or diffuse away from the beam core because of the
existence of a sea of chaos. The advantage of the particle-
beam nonlinear dynamics approach is its ability to under-
stand the hysteresis effects and to calculate the beam dis-
tribution beyond the threshold condition. Such a procedure
may be able to unify our understanding of collective insta-
bilities and nonlinear beam dynamics. Here, the stability is-
sues of a space-charge dominated beam in a uniformly fo-
cusing channel are considered as an example [4].

2 COLLECTIVE-MOTION APPROACH
Gluckstern et. al. [5] have studied the collective beam sta-
bilities of a space-charge dominated K-V beam in a uni-
formly focusing channel. They showed that the (1,0) mode
is stable for any amount of envelope mismatch and tune de-
pression η. The (2,0) mode becomes unstable at zero mis-
match when η < 1/

√
17 = 0.2435 and also when the mis-

match is large. This is plotted in Fig. 1 with the stable re-
gion enclosed by the red solid curve. The stability regions
of the (3,0) and (4,0) modes, enclosed by the blue dashes
and the magenta dot-dashes, respectively, are also shown.
These latter two modes become unstable at zero mismatch
when the tune depressions are less than 0.3859 and 0.3985,
respectively. They found that the modes become more un-
stable as the number of radial nodes increases. Among all
the azimuthals, they also noticed that the azimuthally sym-
metric modes (`,0) are the most unstable.

3 PARTICLE-BEAM APPROACH
We want to investigate whether the instability regions in
Fig. 1 can be explained by nonlinear parametric resonances.
The particle Hamiltonian describing an azimuthally sym-
metric oscillating beam core of radius R is [6]
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where y and py are the particle’s transverse coordinate
and canonical momentum, µ/(2π) the unperturbed parti-
cle’s betatron tune, and κ the normalized space-charge per-
veance, which is related to the tune depression by η =√

1+κ2−κ. Here, only the situation of zero angular mo-
mentum is discussed [4]. For a weakly mismatched beam,
the envelope radius can be written as R=R0+∆R cos Qeθ,
where Qe is the envelope tune and θ the ‘time’. The particle
Hamiltonian can be expanded in terms of the equilibrium
envelope radius R0, resulting in Hp = Hp0 +∆Hp, where
the unperturbed Hamiltonian Hp0 is the same as Hp with R
replaced by R0. Thus, for a matched beam, ∆Hp = 0.

4 PARAMETRIC RESONANCES
For a mismatched beam, particle motion is modulated by
the oscillating beam envelope. The perturbation Hamilto-
nian ∆Hp, obtained from Taylor’s expansion, can be ex-
panded as a Fourier series in the action-angle variables [6].
Parametric resonances occur when the phase is stationary.
Focusing on the n:m resonance, we perform a canonical
transformation to the resonance rotating frame (Ip, φp):

〈Hp〉 = Ep(Ip) − m

n
QeIp + hnm(Ip) cos nφp , (2)

with the effective κ-dependent resonance strength given by

hnm =
(m + 1)Mmµκ

2πR2
0

|Gnm(Ip)| , (3)

where M = 1 − Rmin/R0 is the envelope mismatch. The
n stable and unstable fixed points can be found easily. Be-
cause particles are affected only by resonances when they
are just outside the envelope core, their tunes are essentially
the tune inside the beam envelope. At zero mismatch, the
threshold for the n:m resonance can therefore be derived by
equating the ratio of particle to envelope tunes to m/n, i.e.,

κ ≥ 1
2
√

2

[( n

m

)2

− 4
] [( n

m

)2

− 2
]−1/2

. (4)

Figure 1: Beam stability versus particle tune depression and en-
velope mismatch: stability region for Gluckstern’s (2,0) mode en-
closed by red solid curve, the (3,0) and (4,0) modes by blue dashes
curve and magenta dot-dashes. Overlaid are first-order resonances
shown as solid and second- and higher-order resonances as dashes.

In particular, for the 6:1 resonance, κ≥8/
√

17=1.9403, or
tune depression η ≤ 1/

√
17 = 0.2425, which agrees with

Gluckstern’s instability threshold for the (2,0) excitation.
Trackings have been performed for particles outside the

envelope core using the 4th-order symplectic integrator [7].
The Poincaré surface of section are shown in Plots A, B, C,
D, E, F of Fig. 2 corresponds to Points A, B, C, D, E, F in
Fig. 1. The innermost torus is the beam envelope. The sec-
tions are taken every envelope oscillation period when the
envelope radius is at a minimum. In Plot A, with (η, M)=
(0.20, 0.30), particles that diffuse outside the beam enve-
lope, will encounter the 6:1 resonance, which is bounded
by a very thin layer of tori. This region is therefore on the
edge of instability. However, the last good torus will be bro-
ken if η is further decreased, which corresponds to Plot B,
a close-up plot with (η, M) = (0.10, 0.15). Particles that
diffuse outward from the beam core will wander easily to-
wards the 2:1 resonance along its separatrix. This region,
where η . 0.2, is therefore very unstable. This explains
the front stability boundary of the (2,0) mode of Gluckstern,
et. al. Particles in Plot C with (η, M) = (0.44, 0.25) see
many parametric resonances, first 10:3, then 6:2, 8:3, 10:4
and after that a chaotic layer going towards the 2:1 reso-
nance. These resonances are separated by thin layers of
good tori. This region is on the edge of instability. Plot D
with (η, M) = (0.30, 0.10) shows the 6:2 resonance well
separated from the 10:4 resonance with a wide area of good
tori. Note that the 2:1 unstable fixed points and separatri-
ces are not chaotic at all. This region will be very stable.
Plot E, with (η, M) = (0.50, 0.60), is at very large mis-
match although the tune depression is moderate. The 2:1
unstable fixed points and separatrices are very chaotic, and
are very close to the beam core. Thus particles can easily
diffuse towards the 2:1 resonance, making this region un-
stable. Finally, Plot F, with (η, M) = (0.90, 0.10), is with
small space charge and small mismatch. The beam enve-
lope is surrounded by good tori far away from the 2:1 sep-
aratrices. This region is very stable.

Since the 4:1 resonance is a strong one, its locus ex-
plains the front stability boundaries of Gluckstern’s (3,0)
and (4,0) modes also. The deep fissures of the (2,0) mode
near η = 4.7 and 5.3 are probably the result of encounter-
ing the 10:3 and 6:2 parametric resonances. The width of
the fissures should be related to the width of the resonance
islands, which can be computed in the standard way. In
general, a first-order resonance island, like the 4:1, is much
wider than a higher-order resonance island, like the 6:1.

We tried very hard to examine the region between the 4:1
and 10:3 resonances with a moderate amount of mismatch.
We found this region very stable unless it is close to the 10:3
resonance. We could not, however, reproduce the slits that
appear in the (4,0) mode of Gluckstern, et. al.

5 CONCLUSIONS
We have now an interpretation of the collective instabili-
ties in the plane of envelope mismatch and tune depression
through the particle-beam nonlinear-dynamics approach.
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Figure 2: Poincaré surface of section in particle phase space (y, p). Plot A is with (η, M) = (0.20, 0.30), Plot B (0.10, 0.15), Plot C
(0.44, 0.25), Plot D (0.30, 0.10), Plot E (0.50, 0.60), Plot F (0.90, 0.10), corresponding, respectively, to Points A, B, C, D, E, F in Fig. 1.
The last 5 are close-up plots, showing only up to the unstable fixed points and internal separatrices of the 2:1 resonance.

Because of the existence of noises of all types in the acceler-
ators and the K-V equation is far from realistic, some parti-
cles will diffuse away from the K-V distribution. Although
these particles may encounter parametric resonances once
outside the beam core, an equilibrium will be reached if
these resonances are bounded by invariant tori. It may hap-
pen that the island chains outside the beam envelope are so
close together that they overlap to form a chaotic sea. When
the last invariant torus breaks up, particles leaking out from
the core diffuse towards the 2:1 resonance, which is usu-
ally much farther away from the beam envelope, to form
beam halos. As particles escape from the beam envelope,
the beam intensity inside the envelope becomes smaller and
the equilibrium radius of the beam core shrinks. Thus more
particles will find themselves outside the envelope. As this
process continues because no equilibrium can be reached,
the beam eventually becomes unstable.

So far, we have been able to explain the results of Gluck-
stern, et. al qualitatively. However, there are differences
quantitatively. To the lowest order, the Vlasov equation
studied by Gluckstern, et. al. does involve the perturbation
force induced by the perturbation distribution via the Pois-
son’s equation. In our nonlinear-dynamics approach, the
particle that escapes from the beam envelope core, always
sees the Coulomb force of the entire unperturbed beam
core, independent of any variation of the core distribution
due to the leakage of particles. This is mainly due to the
fact that we have been treating the envelope Hamiltonian
and the particle Hamiltonian separately. This leads to a de-
pendency of the particle equation of motion on the envelope
radius, but not the dependency of the equation of motion of
the envelope radius on the particle motion. This is a short-
coming in our approach, which we need to improve. We be-
lieve that this is also the reason why we have not been able

to compute the growth rates of the instabilities.
It is possible that many collective instabilities can be ex-

plained by the particle-beam nonlinear dynamics approach.
The wakefields of the beam interacting with the particle
distribution produce parametric resonances and chaotic re-
gions. Collective instabilities will be the result of parti-
cles trapped inside these resonance islands. The perturbed
bunch structure further enhances the wakefields to induce
these collective particle instabilities.
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