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Abstract

The problem of electrostatics repulsion between charged
particles in a bunch is a classical mixed Dirichlet-
Neumann problem. In this paper, an analytical solution of
this problem is described. The approach proposed here can
be extended to other problems in mathematical physics.

1  INTRODUCTION
In an accelerator a bunched beam consists of an arbitrary
system of charged particles embedded in a finite volume.
The surface separating this system of particles from the
environment possesses often a complicate form difficult to
define. Moreover the density (number of particles per
unity of volume) does not generally follow the usual
mathematical statistics laws. However the forces acting on
the particles are well-known and the behaviour of the
system of particles can be in principle deduced from its
distribution.  knowing the position of these particles, the
effects of the electrostatic repulsion between the particles
can be calculated. The problem could be simplified in
finding appropriate solutions of the Poisson equation
∆U=-ρ /ε0 where ρ is the electric charge density, and U
the electrostatic potential.

2  THE ELECTROSTATIC PROBLEM OF
THE BUNCH

Summarising the more general problem in electrostatics
for a system of particles embedded in a finite volume V,
one obtains a mixed Dirichlet-Neumann problem. The
solution of this problem requires the conditions prescribed
on the boundary S of a finite region within V. When the
system of charged particles is arbitrary, these conditions
cannot be easily defined, and one substitutes the following
problem:
i) ∆U=-ρ /ε0

ii) U and its partial derivatives are null at ∞     (1)
iii) ρ is continuously null outside a finite region

The density ρ will be obtained from the system of charged
particles. For a system of particles lying in a closed
volume, this problem can be considered identical to the
Dirichlet-Neumann problem[1].

3   BEST-APPROXIMATION OF THE
DENSITY FUNCTION WITH 3-D SERIES

The density function must be expressed in a suitable
analytical form, allowing to compute the potential. To do
so, the density is expanded in a series of 3-dimensional
orthogonal functions. As the limits of the system of
particles are not well-known, only 3-d orthogonal
functions requiring no strict boundary limits must be
retained.  Periodic orthogonal functions (as Fourier series,
for example) are complicated since they introduce image
effects resulting of the periodicity. A good candidate,
satisfying the conditions ρ=0 at, ∞ can be obtained by a
generalisation in 3-d of the Hermite functions.
One defines :
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where )(xlΨ  are the Hermite orthogonal functions

generated from the following defining relation :
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where Hl(xi) are the orthogonal Hermite polynomials[2,4]
of degree l, forming a complete sequence of orthogonal
functions in the functional space L2(R3) of the functions
measurable with the following Lebesgues-measure [3]:
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One endows this functional space with a scalar product  :
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The density ρ, being null outside a finite region, belongs
to this functional space. One can then expand the density
in the complete basis:
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Let’s consider now a finite sequence {δlmn} with

111 ,,,,0 nmlnml ≤≤ . This sequence generates a

functional space X(l1,m1,n1) endowed with the scalar

product defined in Eq. 5. The finite sequence {δlmn}
constitutes a complete basis of orthogonal functions , and
any function in this space can be expanded in this basis.
One can prove [3] that there exists one element and only
one element )(1 ρS  in X(l1,m1,n1), such that the following

distance:
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is minimum. This element is the projection of the density
ρ in the functional space X(l1,m1,n1). Expanding this
projection with the basis one obtains :
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One can show [3] that, contemplating a system of N
charged particles, one has :
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where xi, yi, and zi are the co-ordinates of the particles.
One also proves [2,3] that the distance D given in Eq.7 is
bounded, and one has :
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where C is a constant depending of the density.
The general expression of the field components is given
by :
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The density ρ being positive or null in a finite region,

from the first theorem of the average[4],  the truncation
error introduced in the potential or in the field
components, when the density ρ is replaced by Sl(ρ),
could be deduced from  the distance D .

4  ANALYTICAL SOLUTION OF THE
POISSON  EQUATION
In the problem (1), the density ρ can be replaced by it’s
approximation Sl(ρ) and one considers separately each
term in the series in Eq. (8) :
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These u ,v and w are the normalised co-ordinates obtained
in scaling the co-ordinates along the principal axes relative
to the r.m.s.  dimensions a , b and c of the bunch.
Applying a Fourier transformation to Eq. (12), one obtains
an expression of the field component :
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An analytical solution of this 3-d complex integral can be
found by separating it into three 1-d complex integrals.
This process leads to very sizeable analytical calculations
[3], whom one only gives here the principle. One
considers for instance in the 3-d integral above, the
following integral function :
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From the Cauchy residue theorem and from an integral
representation of the probability function, one obtains an
analytical expression of )ˆ,ˆ(1 wvI  in terms of Hermite

functions. Introducing this expression in the 3-d integral in
Eq. (13), one has to calculate a new integral function :
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The Cauchy residue theorem and the properties of the
Hermite functions, allow to obtain an other analytical
expression in terms of Hermite functions. This expression
introduced in Eq. (13), enable to obtain an analytical
expression of the 3-d integral.
Further, in the aim to save computer time, integrals above
could be calculated through expansions around specific
positions in the bunch.

5 EXAMPLES
Figures 1-5 illustrate an estimation of the influence of the
truncation error, done when the density ρ  is replaced by

its truncated series developments defined in Eq. (8), on the
potential or on the field components calculated with the
same  3-d Gauss numerical integration on a sphere. This
numerical integration has been used in place of the
analytical method explained in this paper, because this can
only be applied to the series developments. The "noise"
observed on the curves is induced by the numerical
integration.

Figure 1: The radial field component along a diameter of a
sphere for which the density ρ(x,y,z)=1 is compared with
the same component as calculated by series developments
with l1, m1 and n1 = 12. Due to the symmetry, only the
terms in the series with even l, m and n are not null.
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Figure 2: The density is a 4th order spherical function,
represented here at z = 0.

Figure 3: The field component Ex deduced from the
density given in fig. 2 is compared with this obtained from
the truncated series with l1, m1 and n1 =6. The difference
vanishes when increasing this values to 12 (see fig. 1).

 

Figure 4: The density is a non-symmetrical function
represented here at z = 0.

Figure 5: Field component Ex along x-axis with a beam
density given in fig.4, compared with this calculated from
series developments with l1, m1 and n1 =7. Here the terms
in the series, with odd and even l ,m and n are used. As in
the practical cases, the density is here continuous at the
boundary of its defining area, contrary to previous
example (fig.2).

6    CONCLUSION
The present work suggest a new type of approach leading
to an analytical solution of a classical Dirichlet-Neumann
problem in 3-dimensions. It is particularly suitable for an
arbitrary system of charged particles without symmetry,
when the limits of the system are not well-known. It can
be extended to other problems in mathematical physics. A
new routine is being developed solve space-charge effects
in accelerators. It could become a good tool helping in the
estimation of tolerances necessary for the design and
operation of high intensity linacs. Some possible
refinements of the present method are still being studied.
This process might also be used for cyclotrons.
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