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HALO FORMATION AND CONTROL

S.N.AndrianoV, N.S.Edamenko, SPbSU, S.Petersburg, Russia

Abstract bution functions are described [3]. The Ferrer’s integrals

In this report we suagest some aporoaches o ver intricat%Chnique is used for calculation of space—charge forces in
P 99 . PP . Y symbolic form. Note if we neglect space—charge forces
problem of the halo formation process. It is known tha

he motion equation for Lie transformation have linear op-

this process leads to the formation of a sufficiently COMz rator form, but if the space—charge forces are included in

pact core and a spreading cloud - halo, which surrounds ﬂaﬁr investigation the corresponding equation become non-

e it s ot s e generaing vector Tl depedsonbea cra-
Jects . _ . . acteristics. Nonlinear nature of these equations leads to
for Lie algebraic tools for time evolution of particle beam

Usage of the matrix formalism allows to investigate the inlf"1 necessity (o use the successive approximations method.
9 9 Obtained convergence conditions and algorithms give op-

fluence of different forms of starting model distributions. ortunity to estimate a current step value in advance and to

All calculations are based on symbolic representation o?recfte necessary software for modeling [4]. The truncated

necessary mapping generated by space charge forces Atrix equations (up to third order) are solved with the use

, . d
external control fields. This allows us to formulate the bacc o o0 ic for Lie algebraic tools with neces-

sic reguwements wh|c_h are necessary for halo formatlogary symplification procedure [5]. As a result of this work,
that gives us a possibility to control this process.

there are a number of computer experiments that show us
what kind of both beam and beamline characteristics have
1 INTRODUCTION to be taken in account. The necessary software was created
, ) using the dynamic modeling paradigm [6].
It is known that usually the evaluation of space charge ef-

fects on the beam dynamics requires intensive numerical
calculation. That is why there are innumerable publica- 2 A SPACE CHARGE DESCRIPTION

tions, which devoted to modeling of space charge dynam» 1 The Initial Space Charge Distributions

ics for concrete machines. The most of papers concentrate T

upon an numerical analysis of the influence of the bearh® initial space—charge distribution in theoophase—space
line characteristics for matched or/and unmatched beangain be written in the general forfy(X) = > fPX[¥]
Nevertheless the problem of the influence of beam distri- . " k=0

bition characteristics keep through our study. But it is imorin the case of elliptical symmetry
possible to obtain total presentation of, for example, halo oo
problem without thorough investigation of differentkind of ~ fo(X) = > _ afx®* = " a} (XF* A XM (1)
conditions which affect halo formation. Most recent publi- k=0 k=0

cations have dealt with either the KV-distribution or several

o0

k _ .
simple distributions. In the paper [1] a very interesting apwhereX[ }' = X@-....®X is the Kronecker power
proach to halo production is presented. The authors suggest k—times
new concepts for halo description which allows, in particof the phase vectoX = (z,p.,y,p,)",dim X =

ular, to solve problems of halo control. All approaches tc(’“jf),Aék} is the symmetrical Kronecker power of the
this problem have ultimatelly depended upon the calculanitial form matrix Ag : k2 = X*A¢X:

tion techniques that can be applied. To understand halo for- . (K]

mation process, in this work we consider the evalution of (A{ })u = bi(’f)(Ao )i,,

the phase—space distribution in terms of matrix representa- -

tion for Lie transformations [2]. This allows us to use com- il=1 (” +k— 1) bi(k) = k! /K1) . k!

puter algebra methods and codes to reduce the real time ’ k n R
needed for the numerical calculations. The external forces

are assumed radial and periodical, as in solenoid channe?s2 The Self-Field of the Space Charge

This force model can be also appleid to quadrupole focugjging the Ferrers's integrals technique we calculate the de-
ing if the phase advance is not too large. The focusingeq space—charge forces in symbolic forms for some mod-
force as the space-charge forces are considered upto ab@finction of space-charge distributions. In particular, we

rations of the third order. In this paper we use the modejyain the components of the vector of self-electrical field
of long beams with an elliptical cross—section in the transy, ihe form
verse phase—space. Some models of phase—space distri-

dwpg  ab
Een = Egﬂl + AEgy, Eg - e ala+b)

£,
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po_dmpo__ab whereM'* are matrices which can be calculated with the
T e bla+b) help of the matrix formalism tools.

where¢, 1 are local coordinates in which the transverse According to our suggestions the beam particles occupy
cross—section has the form of a canonical ellipse. The va#ome elliptical cross—sectidbi, in an initial state:
ues ofAE¢, AE, are calculated with the help 8f APLE
codes. Note that for the KV distribution we haxeF, = My = {XO C XA X < 1}.
AE, = 0. Besides, if the arbitrary distribution(z, y) =
po®(x?) is a polynomial ofn-th order with respect to the As we mention above in the presence of the space—charge
variabless$ the functionsA E; and A E,, are polynomials the motion equation for the mapt assume a nonlinear
of (2n + 1)-th order with respect to the variablésandn.  form. For the solution of this equation in this paper we
Then we can return to the coordinatesy referenced to a propose the method of step-by-step approximations. The

beamline system. basic idea of this method in our case is to calculate the dis-
tribution function according to the algorithm described in
3 THE MOTION EQUATION [4]).
From the known properties of Lie maps we can write
3.1 The Motion Equation for a Particle for an arbitrary function of an initial distributiofy (X) =
For a nonbunched beam (the longitudinal self—electric field (X 50): f(X,s) = fo(M _1( [s0) - X). In our case
is missing) the motion equation for single particle can beve have M—!(s|sg) - X = Z T (s]s¢) X *, where

written in the following matrix form
T = —M!9, T = (M)~ & and other matriceq''*

dX & 1k 1k k for £ > 1 can be calculated with the help of the recurrent
ds Z{Pm( 8) + Pei )}X[ g generalized Gauss’s algorithm using the matridds”.
It is worthy to note that according to this algorithm one
The matricesP;, and P}}, . describe the external and should inverse only the matrixI'! and then use only ma-
space-charge fields correspondingly [4]. trix operations for calculation the necessary matrige$
up to the desired order. So after some calculations we can
3.2 Transfer Map in the Presence of the Spacesbtain the following equation

Charge F(X,8) = fo(M™ - X) =

Itis known that the Lie algebraic tools is very valuable tools

to studying beam dynamics without space—charge. The Lie > i B
map satisfies to the following linear operator equation ag Z aj, (M bexl ) A({) }(M ' 'X[k]) =
k=1
dM(s |30)
EOM(8|80), (2) [ee] [e'<JNe'e] ) 4
ds ald +ZGQZZ(X[”)*BZJXM’
whereM(s|sg) is a time—displacement operator (Lie map) k=1 I=k j=k

between moments, ands:

M:XO - X = M(S|So) - Xo.

BY = (TH)*AfM T,

For the test of the convergence of our approximations meth-
and/ is a Lie operator associated with a generating vectards the following condition can be used
field. If the beam is an ensemble of noninteracting particles

then the operatof depend only on beamline parameters. If (Ml 0 X) = fF(M T o X)|| <
If we have to take into account the space—charge forces the
Lie operator will depend on beam characteristics and as <BlfFM o X) — FIM;L, o X))

result it will depend on the Lie map. In this case we US€or B < 1, k -is an iterative loop number. The constant of

nonlinear motion equation for Lie map already: this method3 can be calculated as a function of the initial
dM(s]so) _ beam characteristics and the beamlines parameters. The
- condition < 1 allows the limitations on the step values

ds
In the frame of the matrix formalism [2] we can represen#‘g — s¢—1| = As; 1o be calculated which guarantee the
ulfilment of the inequality3 < 1.

this map in the fornM: X, = X = M(s]so) - Xo,
3.3 The Matrix Formalism for Lie Map 4 COMPUTER EXPERIMENTS

According to the matrix formalism [2] we can write The approach discussed above was used for some practical
~ problems: the halo formation problems. The correspond-
X = M(s|so) - Xo = Z Mlk(S|SO)X([]k1’ (4) ing computer experiments was developed both in symbolic
(with the help of MAPLE codes) and in numerical modes.

L(M) o M(s]|so). 3)

k=1
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The symbolic investigation was carried out with main pur-  of the 1996 Comput. Acc. Phys. Conf. — CAP’96, Sept.
pose to understand what parameters have the sufficient in- 24-27, Williamsburg, Virginia, USA, eds. J.J.Bisognano,
fluence on halo production. For this task we studied the A-%-Monde”i, AlP C|3,0m°- Proc39], NY,f1997,1 IPP-355—36Q-h
images of an initial beam state (in the distribution function 3] Andrianov S.NNonlinear Dynamics of Particle Beams wit
. . . Space Chargein: Proc. of the 9th Intern. Conf. "Compu-

terms) and used the concepts of virtual scrapers for investi- . . o o

. fwh f the initial b . he basi tational Modelling and Computing in Physics”, September
ggtlo_n of what parts o .t e initia eam glvgt ebasic con- 15 51 1996, D5, 11-97-112, pp.55-60, Dubna, 1997.
tribution to halo formation. According to this approach we [4] Andrianov S.N.,High-Order Optics with Space Charge:
transform the aperture boundaries of virtual scrapers with  Analytical ApproachProc. of the Sixth European Part. Acc.
the help of inverse maps from some current sections to the Conf. — EPAC-98, Stockholm, 22-26 June 1998, Inst. of
initial point. Changing the aperture values one can select Phé’S,- Publ., BristOL,I UK, plf-1091—1093- b  Hal
"tails” part of the initial distribution. This approach demon- [°] Andrianov S.N., Edamenko N.Ssome Problems of Halo

. - Formation in BeamlingsAbstrs. of the Fifth Intern. Work-
strated its advantages and flexibility. As an example on the h B D ‘s & Obtimizati 50008
Figure.1 the initial and current phase distribution functions oy o o Soar  Zynamies ptimization '
gure. . P St.Petersburg, 29 June — 3 July 1998, p.12.

are demonstrated. On the pictures a)—d) one can see tljg] Andrianov S.N.Dynamic Modeling Paradigm and Com-
images of the initial function for some moment: onthe part  puter Algebra Proc. of the Int.Conf. on Comput. Model-
a) — the image of total distribution function, on the part b)  ing and Computing in Physics, Dubna, Russia, 16-21 Sept.,
— the image of tails particles and on the part ¢) — the image 1996, Dubna, 1997, pp.60-64.
of the intermediate particles, on the part d) — the image of
the central core particles. We should note that for most dis-
tribution function the core particles give the corresponding
contribution to halo. The most extreme particles from the
tail part remain in halo if they reach it once. One can see
on the presented pictures different phases of halo forma-
tion for two parts of initial beam state: the first is evaluated
from central part which is small enough and the second
is evaluated from particles which form so—called "tail” of
distribution function which can be defined using the virtual
scraper concept.

Figure 1: The initial model distribution function and 3D—
contourplots for different parts of the initial distribution
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