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Abstract

In this report we suggest some approaches to very intricate
problem of the halo formation process. It is known that
this process leads to the formation of a sufficiently com-
pact core and a spreading cloud - halo, which surrounds the
core. Our approach to this problem is based on two main
objects: initial distribution functions and matrix formalism
for Lie algebraic tools for time evolution of particle beam.
Usage of the matrix formalism allows to investigate the in-
fluence of different forms of starting model distributions.
All calculations are based on symbolic representation of
necessary mapping generated by space charge forces and
external control fields. This allows us to formulate the ba-
sic requirements which are necessary for halo formation,
that gives us a possibility to control this process.

1 INTRODUCTION

It is known that usually the evaluation of space charge ef-
fects on the beam dynamics requires intensive numerical
calculation. That is why there are innumerable publica-
tions, which devoted to modeling of space charge dynam-
ics for concrete machines. The most of papers concentrate
upon an numerical analysis of the influence of the beam
line characteristics for matched or/and unmatched beams.
Nevertheless the problem of the influence of beam distri-
bition characteristics keep through our study. But it is im-
possible to obtain total presentation of, for example, halo
problem without thorough investigation of different kind of
conditions which affect halo formation. Most recent publi-
cations have dealt with either the KV-distribution or several
simple distributions. In the paper [1] a very interesting ap-
proach to halo production is presented. The authors suggest
new concepts for halo description which allows, in partic-
ular, to solve problems of halo control. All approaches to
this problem have ultimatelly depended upon the calcula-
tion techniques that can be applied. To understand halo for-
mation process, in this work we consider the evalution of
the phase–space distribution in terms of matrix representa-
tion for Lie transformations [2]. This allows us to use com-
puter algebra methods and codes to reduce the real time
needed for the numerical calculations. The external forces
are assumed radial and periodical, as in solenoid channels.
This force model can be also appleid to quadrupole focus-
ing if the phase advance is not too large. The focusing
force as the space–charge forces are considered upto aber-
rations of the third order. In this paper we use the model
of long beams with an elliptical cross–section in the trans-
verse phase–space. Some models of phase–space distri-

�Serge.Andrianov@pobox.spbu.ru

bution functions are described [3]. The Ferrer’s integrals
technique is used for calculation of space–charge forces in
a symbolic form. Note if we neglect space–charge forces
the motion equation for Lie transformation have linear op-
erator form, but if the space–charge forces are included in
our investigation the corresponding equation become non-
linear as the generating vector field depends on beam char-
acteristics. Nonlinear nature of these equations leads to
a necessity to use the successive approximations method.
Obtained convergence conditions and algorithms give op-
portunity to estimate a current step value in advance and to
create necessary software for modeling [4]. The truncated
matrix equations (up to third order) are solved with the use
of the matrix formalism for Lie algebraic tools with neces-
sary symplification procedure [5]. As a result of this work,
there are a number of computer experiments that show us
what kind of both beam and beamline characteristics have
to be taken in account. The necessary software was created
using the dynamic modeling paradigm [6].

2 A SPACE CHARGE DESCRIPTION

2.1 The Initial Space Charge Distributions

The initial space–charge distribution in the phase–space

can be written in the general formf0(X) =
1P
k=0

f0kX
[k]

or in the case of elliptical symmetry
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2.2 The Self–Field of the Space Charge

Using the Ferrers’s integrals technique we calculate the de-
sired space–charge forces in symbolic forms for some mod-
elfunction of space-charge distributions. In particular, we
obtain the components of the vector of self–electrical field
in the form

E�;� = E0
�;� +4E�;�; E0

� =
4��0
�0

ab

a(a+ b)
�;

0-7803-5573-3/99/$10.00@1999 IEEE. 1866

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999



E0
� =
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where�, � are local coordinates in which the transverse
cross–section has the form of a canonical ellipse. The val-
ues of�E� ;4E� are calculated with the help ofMAPLE

codes. Note that for the KV distribution we have4E� =
4E� = 0. Besides, if the arbitrary distribution�(x; y) =
�0�(�

2
1) is a polynomial ofn-th order with respect to the

variables�21 the functions4E� and4E� are polynomials
of (2n + 1)-th order with respect to the variables� and�.
Then we can return to the coordinatesx, y referenced to a
beamline system.

3 THE MOTION EQUATION

3.1 The Motion Equation for a Particle

For a nonbunched beam (the longitudinal self–electric field
is missing) the motion equation for single particle can be
written in the following matrix form

dX

ds
=

1X
k=1

n
P
1k
ext(s) +P

1k
self (s)

o
X [k]:

The matricesP1k
ext andP1k

self describe the external and
space-charge fields correspondingly [4].

3.2 Transfer Map in the Presence of the Space–
Charge

It is known that the Lie algebraic tools is very valuable tools
to studying beam dynamics without space–charge. The Lie
map satisfies to the following linear operator equation

dM(sjs0)

ds
= L �M(sjs0); (2)

whereM(sjs0) is a time–displacement operator (Lie map)
between momentss0 ands:

M:X0 ! X =M(sjs0) �X0:

andL is a Lie operator associated with a generating vector
field. If the beam is an ensemble of noninteracting particles
then the operatorL depend only on beamline parameters.
If we have to take into account the space–charge forces the
Lie operator will depend on beam characteristics and as
result it will depend on the Lie map. In this case we use
nonlinear motion equation for Lie map already:

dM(sjs0)

ds
= L(M) �M(sjs0): (3)

In the frame of the matrix formalism [2] we can represent
this map in the formM:X0 ! X =M(sjs0) �X0,

3.3 The Matrix Formalism for Lie Map

According to the matrix formalism [2] we can write

X =M(sjs0) �X0 =

1X
k=1

M
1k(sjs0)X

[k]
0 ; (4)

whereM1k are matrices which can be calculated with the
help of the matrix formalism tools.

According to our suggestions the beam particles occupy
some elliptical cross–sectionM0 in an initial state:

M0 =
n
X0 : X

�
0A

11
0 X0 � 1

o
:

As we mention above in the presence of the space–charge
the motion equation for the mapM assume a nonlinear
form. For the solution of this equation in this paper we
propose the method of step-by-step approximations. The
basic idea of this method in our case is to calculate the dis-
tribution function according to the algorithm described in
[4]).

From the known properties of Lie maps we can write
for an arbitrary function of an initial distributionf0(X) =
f(X; s0): f(X; s) = f0(M

�1(sjs0) � X). In our case

we haveM�1(sjs0) � X =
1P
k=0

T
1k(sjs0)X

[k], where

T
10 = �M10, T11 = (M11)�1 and other matricesT1k

for k > 1 can be calculated with the help of the recurrent
generalized Gauss’s algorithm using the matricesM1k.
It is worthy to note that according to this algorithm one
should inverse only the matrixM11 and then use only ma-
trix operations for calculation the necessary matricesT

1k

up to the desired order. So after some calculations we can
obtain the following equation
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For the test of the convergenceof our approximations meth-
ods the following condition can be used

kf(M�1
k+1 �X)� f(M�1

k �X)k �

� �kf(M�1
k �X)� f(M�1

k�1 �X)k

for � < 1, k -is an iterative loop number. The constant of
this method� can be calculated as a function of the initial
beam characteristics and the beamlines parameters. The
condition� < 1 allows the limitations on the step values
jsk � sk�1j = 4sk to be calculated which guarantee the
fulfilment of the inequality� < 1.

4 COMPUTER EXPERIMENTS

The approach discussed above was used for some practical
problems: the halo formation problems. The correspond-
ing computer experiments was developed both in symbolic
(with the help of MAPLE codes) and in numerical modes.
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The symbolic investigation was carried out with main pur-
pose to understand what parameters have the sufficient in-
fluence on halo production. For this task we studied the
images of an initial beam state (in the distribution function
terms) and used the concepts of virtual scrapers for investi-
gation of what parts of the initial beam give the basic con-
tribution to halo formation. According to this approach we
transform the aperture boundaries of virtual scrapers with
the help of inverse maps from some current sections to the
initial point. Changing the aperture values one can select
”tails” part of the initial distribution. This approach demon-
strated its advantages and flexibility. As an example on the
Figure.1 the initial and current phase distribution functions
are demonstrated. On the pictures a)—d) one can see the
images of the initial function for some moment: on the part
a) – the image of total distribution function, on the part b)
– the image of tails particles and on the part c) – the image
of the intermediate particles, on the part d) – the image of
the central core particles. We should note that for most dis-
tribution function the core particles give the corresponding
contribution to halo. The most extreme particles from the
tail part remain in halo if they reach it once. One can see
on the presented pictures different phases of halo forma-
tion for two parts of initial beam state: the first is evaluated
from central part which is small enough and the second
is evaluated from particles which form so–called ”tail” of
distribution function which can be defined using the virtual
scraper concept.

Figure 1: The initial model distribution function and 3D–
contourplots for different parts of the initial distribution
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