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Abstract

The general analytical and numerical scheme to calculate
the parameters of high intensity beam being transported is
considered. Nonlinearities of external fields and space
charge are taken into account. The matching conditions
for a beam and focusing system aren’t required. Lie
algebraic technique was applied to derive the dynamic and
the field equations selfconsistently. The distribution
function and the macroscopic parameters of a beam at any
transport channel cross-section were calculated in the
framework of the Heisenberg picture in statistical
mechanics. The computer code was carried out and
verified. Test results are represented.

1  INTRODUCTION
To calculate the main dynamic parameters of the
continuous relativistic high-current beam, being focused,
at any cross-section of the transport channel one should
operate with altering distribution function of transverse
coordinates and momenta of charged particles. For chosen
temporal and spatial scales interaction between particles
inheres in collective behavior, charged plasma assumes to
be collisionless. Therefore, firstly, one may consider a
beam, submitted to the electromagnetic fields of focusing
elements, as the Hamiltonian system. Secondly, to
calculate the macroscopic parameters of a beam we may
evaluate one particle distribution function

);,,, zppyx yxJ�  that satisfies the Vlasov equation.

For the realistic transport channels operations with a
small parameter and linearized selfconsistent equations
are not valid. One should implement nonpertubative
methods to step forward. In [1] to apply Lie algebraic
techniques were proposed and stationary case was
examined. Nonstationary focusing was considered in [2]
on the basis of the quasi-stationary plasma model by the
algebraic methods. In this paper the general solution of
nonlinear focusing of nonstationary space charge
dominated beam is discussed.

2  TRANSFER MAP CALCULATION
Let’s consider 4D-phase space of transverse canonical
conjugated coordinates and momenta of the continuous
charged particle beam. The actions of the transfer map
Μ , which brings about the symplectic manifold
___________________
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automorphisms, on the phase variables vector

)( yx P ,Py,x,ξ  and on the dynamic function )(ξu  are

defined as ξΜ=ξ )(z  and )(),( ξΜ=ξ uzu . An

independent variable z  is the coordinate along the
reference trajectory. It is essentially, that the transfer map
implementation allows operating with one-particle
Hamiltonian. If the initial coordinates and momenta
values of an arbitrary particle are known at 0=z , i.e. at
the start point of the transport channel, using the operator
Μ  one may calculate them at any z , i.e. at any cross-
section of the transport channel.

One-particle Hamiltonian ),( zH ξ , that governing the

continuous beam transverse dynamics, may be expressed
with sufficient accuracy as a finite sum of m-forms. This
is legitimate provided that the transverse energy of an
arbitrary particle is considerably less then its oriented
motion energy. The number of the m-forms depends on
the accuracy required. Without the loss of generality we
will be concerned with

)1(.),( 432 HHHzH ++=ξ
Here jiij zSzH ξξ⋅=ξ )(2/1),(2 ,

kjiijk zTzH ξξξ=ξ )(),(3 ,

lkjiijkl zLzH ξξξξ=ξ )(),(4 .

Summation over repeated indexes is implied. Matrixes

ijklijkij LTS ,,  are symmetric for any pair of indexes and

depend on ] .
Taking into consideration (1) it is reasonable to find out

the transfer map Μ structure according to the Dragt-Finn
factorization theorem [3]:

:)exp(::)exp(::)exp(: 23 fff4=Μ ,

where fm ::  is the Lie operator associated with the

homogeneous polynomial of degree m.
The dynamic equations for the transfer map factors

were received in [3]. After algebraic manipulation they
are casted into the matrix form:

,bjabiaij MSJM =
.

)2(,ckbjaiabcijk MMMTF −=
.

.2/9 drclbkarabcdij

dlckbjaiabcdijkl

JMMMTF

MMMMLG

⋅−

−−=
.
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Here :)exp(:)( 2fzM = , kjiijk zFf ξξξ= )(3 ,

lkjiijkl zGf ξξξξ= )(4 . Matrixes ijklijkij GFM ,,  are

also symmetric for any pair of indexes and essentially
dependent on z . The unitary symmetric and skew-

symmetric matrixes are denoted as ijI  and ijJ . The

differential equations (2) have to be solved subject to

ijij IzM == )0( , 0)0( ==zFijk , 0)0( ==zGijkl .

If the explicit form of the transfer map Μ is known,
one may calculate changed in time values of a phase
variable vector ξ  according to

)3(,:)(:)
2

::
(

:)(:)(

4

2
3

3

ξ+ξ+

+ξ+ξ=ξ

MfM
f

MfMz

a dynamic function )(ξu  - according to

( ) ( ) ( )

( ) )4(,:)(:)
2

::
(

:)(:)(

4

2
3

3

ξ+





ξ+

+ξ+ξ=ξ

MfuM
f

u

MfuMuzu

a beam macroscopic parameter )(zU  - according to

)5(.),,,())((

)(

yx

yx

ppyxzu

dpdpdydxzU

Jξ

×= ∫∫∫∫

The last formula assumes that averaging the
microscopic dynamic function over an ensemble of
particles implies the Heisenberg picture in statistical
mechanics.

To evaluate the dynamic equations (2) one should know
the z -dependence of the LTS ,,  matrixes. A nontrivial

question is to evaluate the electromagnetic terms in the
Hamiltonian (1). The electromagnetic forces acting on a
beam particle are due to the external fields of focusing
elements and to the interaction of a particle with its
environment.

 3  FOCUSING SYSTEM POTENTIALS
If in particular the magnetic focusing system is used to
transport high-current relativistic beam, we have

0);,(field =ϕ zyx . As for the vector );,(field zyxA ,

its components are calculated analytically in 3 stages for
each focusing element.

1) Solve the Laplace equation for the magnetostatic
potential ),,( zyxU  taking into account the boundary

conditions implied by the magnetic field symmetry.
2) Calculate the components of the magnetic induction

),,( zyxB  from ),,(grad),,( zyxUzyx =B .

3) Obtain the vector potential ),,( zyxA  projections

from ),,(),,(rot zyxzyx BA = .

 4  SPACE CHARGE POTENTIALS

To calculate );,(beam zyxϕ  one should solve the Poisson

equation. Its solution at an arbitrary point ),( 00 yx  of the

beam cross-section at some z  is

)6(,),,,(),,,(

1
);,(

00

00
00

yx

yx
beam

ppyxgyxyxG

pdpdydxd
v

I
zyx

′′′′′′

×′′′′
ε

−=ϕ ∫∫∫∫

where I  is a beam current, 0v  is a reference particle

velocity, 0ε  is a dielectric permittivity of free space. And

),,,( 00 yxyxG ′′  denotes the Green’s function.

It should be noted that the limits of integration over

yx ppyx ′′′′ ,,,  are unknown. In general case one must

substitute the initial variables yx ppyx ,,,  for

transformed variables yx ppyx ′′′′ ,,,  in the integral, that

should be of the form (5). As a result we conclude, that

integration involves the inverse transfer map 1−Μ .
But if the initial distribution ),,,( yx ppyxg  is the

Gaussian, transformed distribution ),,,( yx ppyxg ′′′′
will be the Gaussian too. Moreover, if variables in

),,,( yx ppyxg  are not coupled, the same is valid for

variables in ),,,( yx ppyxg ′′′′ . And for that distribution

we may establish the limits of integration in (6) through

the values >′<=σ′>′<=σ′ 22 , yx yx  and

>′<=λ′>′<=λ′ 22 , yyxx pp  according to the "3

sigma" rule.
After integrating over momenta (6) takes the form

)7(
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Variable substitution xxx σ′′→′ / , yyy σ′′→′ /

allows choosing ),,,( 00 yxyxG ′′  as the Green’s

function of the inner Dirichlet problem for a circle [4].
When the explicit form of the transfer map Μ  is

known, we integrate (7) numerically at the knots of a
spatial net, which covers the cross-section of a beam.

Hence, to calculate the transfer map factors, firstly, we

should represent );,(beam zyx ′′ϕ  as a finite sum of m-

forms according to (1). Secondly, we should establish the
z -dependence of the coefficients of the m-forms.

To satisfy the first requirement we consider

);,(beam zyx ′′ϕ  as a function of 2 variables yx ′′,  and
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1 parameter z . It is substantial, that the function is
defined within the circle. Using the Chebyshev
polynomials as a complete set of orthogonal functions we

decompose );,(beam zyx ′′ϕ  on the polynomials of

yx ′′,  up to the 4-th degree. Coefficients )(zCij  of an

approximation are calculated by the least squares method.
Due to the elliptic symmetry we evaluate only 5 of them.
As the result should be expressed in variables of (7), after

the inverse substitution xx x ′⋅σ′→′ , yy y ′⋅σ′→′  we

have

.)()()(

)()();,(
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4
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4
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yxzCyzCxzC

yzCxzCzyxbeam

′′+′+′+

+′+′=′′ϕ

To satisfy the second requirement we consider

);,(beam zyx ′′ϕ  as a function of 1 variable z  and 2

parameters yx ′′, . It is substantial, that any )(zCij  is a

monotonous function within some focusing element. So
one may construct the empiric formula with 2 parameters

for each )(zCij  within each focusing element. We use

the modified method of averages to establish the type of a
formula and compute its parameters.

To calculate );,(beam zyx ′′A  we solve the vector

Poisson equation in the same manner. If there is no a shift

of the beam centroid, one may use 0== yx AA ,

);,();,( beam
2
0beam zyx

c

v
zyxAz ′′ϕ=′′ . In general

case, the decomposition of functions and the construction
of formulas lead to

.)()()(
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 5  FRINGE QUADRUPOLES FOCUSING
As an example we consider nonlinear focusing of an
electron nonstationary space charge dominated Gaussian
beam in a fringe magnetic quadrupole channel. The
algebraic approach discussed above was implemented to
the computer code LIE_HEI written in Fortran-90.

Let a beam current is =I 100 A, a reference particle

energy is =0E 1 MeV, initial centroid parameters are

=)0(x 0.375×10-10 m, =)0(y -0.575×10-9 m, initial

sizes are =)0(~x 0.25×10-2 m, =)0(~y 0.25×10-2 m,

initial divergences are of 1%.
Let a quadrupole channel is of the total length 1.25 m

and consists of 3 lenses with lengths 0.375, 0.5, 0.375 m
respectively. Each lens has the same values of the gradient

=g 0.025 Tl/m and its second derivative =′′g 0.001

Tl/m3.

In that case of small nonlinearities the moments
approach may be used to treat the example [4].

Figures 1 and 2 depict the transverse beam sizes and the
beam centroid parameters respectively as functions of z
in SI units. The solid curves concern the moments method
[4] and the dashed ones concern the algebraic approach. It
is clear, that results of different methods are in complete
agreement with each other.

Figure 1: Transverse beam sizes variations.

Figure 2: Beam centroid parameters variations.

 6  CONCLUSION
The analytical approach to solve the problem of
nonstationary nonlinear focusing of a high-current beam
was developed. It uses the most general equations that
govern a beam dynamics. And it means that the method
may have various applications in charged particle beam
physics and accelerator science.

Also it should be noted, that using in particular the
Heisenberg picture allows to solve the dynamic equations
and calculate the beam parameters, including its emittance
and brightness, in the same manner and without a concern
about the distribution evaluation.
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