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Abstract

The problem to determine focusing field configuration
that provides the minimal transverse emittance growth of
an intense continuous beam at the end of the transport
channel is considered. Nonlinear terminal Mayer problem
of optimal control related with nonstationary space charge
dominated beam transport by fringe magnetic quadrupoles
was formulated. Then it was reduced to the quadrupoles
parameters optimization. Squared transverse rms
emittance of a beam was casted as the quality criteria.
Matrix differential equations [1] for the transfer map
factors together with the integral equations [1] for space
charge potentials were evaluated. The solutions of the
optimization problem were received by the Nelder-Mead
method combined with the penalty functions. The
computer code was carried out and verified. Test results
are represented.

 1  INTRODUCTION
The design of focusing systems provide the minimal
transverse emittance growth of an intense relativistic
beam has been one of the central challenges in charged
particle beam physics and accelerator science for some
decades. From the mathematical viewpoint minimizing
the emittance is a problem of the optimal control theory
[2]. It is formulated for a system of differential equations
that govern the dynamics of an object under a control in
order to find out the minimum of some functional, for
example, the transverse rms emittance.

Considerable difficulties will emerge often in the
optimal control theory while the minimum of a functional
is calculated. Therefore, when some physical process is
under the examination, one should reduce the optimal
control problem to the problem of optimization, i.e. to
find out the minimum of the function of many variables.
For this purpose it is recommended [3] to approximate the
control function by a set of independent polynomials and
to use the conjugated variables for calculating the quality
criteria gradient.

 2  OPTIMIZATION SCHEME
We consider continuous nonstationary high-current beam
with the Gaussian distribution as initial. The matrix
differential equations for the transfer map factors
___________________
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together with the integral equations for space charge
potentials are used in frame of the algebraic approach for
transverse nonlinear focusing [1]. Calculation of beam
macroscopic parameters, including the transverse rms
emittance, implies the Heisenberg picture in statistical
mechanics. Notations of physical values, that are
involved, are the same as in [1].

Let the focusing system consists of the magnetic
quadrupoles cascading axially. Also the drifts may be
inserted between the lenses. Scalar potential is

����� =ϕ ]\[ILHOG , and the components of vector

potential ���� ]\[ILHOG$  including the fringe fields are
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where ��]J  is the gradient of a single magnetic

quadrupole lens, ����� ]J]J ′′′  are its derivatives with

respect to an independent variable ] .
The Mayer’s problem of optimal control is stated as:

determine physical parameters of magnetic quadrupoles
(magnitudes of gradients, values of the first and the
second derivatives of gradients) as functions of the
longitudinal coordinate ] , which provide the minimal
transverse rms emittance of an intense continues beam at
the end of the transport channel.

This is nonlinear terminal problem of optimal control as
the total length of the transport channel is fixed. It is
reduced in the standard manner [3] to the problem of
optimization of parameters of the quadrupoles and drifts.

The quality criteria (the objective functional or merit
functional) is squared transverse rms emittance of a beam
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where the angular brackets mean averaging the physical
values over an ensemble.
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Each quadrupole possesses 4 parameters: the length of
a lens, the magnitude of gradient, the value of the first
derivative of gradient, the value of the second derivative
of gradient. Each drift possesses 1 parameter: the length
of free space.

The assumption we make is that the action of each lens
is independent of the others. It means we neglect the fields
of one lens tend to leak into the region of any adjacent
lenses [4]. Also we model the action of each lens using
the "hard-edge" approximation. But both linear and
nonlinear focusing forces of a lens are taking into account.

As a result of optimization 4 parameters (3 physical and
1 geometrical) for each lens plus the lengths of all drifts
should be determined. The total number of parameters of
optimization is n=4m+m-1, where m is the number of
quadrupoles. We employ the Nelder-Mead method to
compute the optimal values. It is the regular search
method of the zero order and uses the simplex in n-
dimensional space of the parameters of optimization.

The general calculated scheme to obtain the optimal
focusing system parameters for a transport of an intense
continuous beam with the initial Gaussian distribution on
coordinates and momenta looks as it follows.

1. Define the initial configuration of focusing fields,
which is determined by n parameters, and make the initial
simplex.

2. Compute the transfer map, having the dynamic

equations for its factors, from the start point LQL]  to the

end ILQ]  of the transport channel.
3. Compute the second moments as the average

physical values in the Heisenberg picture, using the
known transfer map factors, at the end of the transport

channel ILQ] .
4. Calculate the terminal meaning of the quality criteria,

which corresponds to the initial configuration of focusing
fields.

5. Make an advanced simplex, according to the Nelder
& Mead idea to move it toward the optimum, and define
the advanced configuration of focusing fields.

Then we repeat actions following steps 2-5 until obtain
the minimum of the quality criteria as a function of n
parameters with prescribed accuracy.

Three main operations are used to transfer the simplex
with (n+1) vertices in n-dimensional space. The
coefficients of reflection, stretching and compression are

�=α , ���=β , �=γ , as it is recommended in [5].

Also the additive penalty function are implemented in
the optimization. It provides the beam "effective"

transverse size ��a��a�
\[

σ′σ′  is no greater than the

transport channel aperture as well as the beam "effective"

transverse momentum ��a���a
\[

λ′λ′  never exceeds

the longitudinal one.
It was the outer cycle implies the regular search for the

quality criteria function minimum. There is also two inner

cycles to compute the transfer map in selfconsistent
manner together with the space charge calculation.

The transport channel consists of the focusing elements.
And every focusing element is conditionally divided with
respect to the ]  variable onto 5 sections (6 calculated
points). Data received are stored for statistics to construct

the empiric formulas for unknown functions ��]&
LM

 and

��]
LM

'  within each focusing element. We use the

modified method of averages to establish the type of each
empiric formula and calculate its 2 parameters. The

transfer map from LQL]  to ILQ]  is computed into 2 stages.
In the first stage we deal with the sections. Every time

we calculate the transfer map from the start point 
L
]  to

the end 
�+L]  of the current section ( LQL]] =

�
,

ILQ

, ]] = ). All the coefficients 
LM

&  and 
LM

'  are

constant, and we derive the dynamic equations for the
current section transfer map factors. So, the transfer map

from LQL]  to ILQ]  is a consequence of transfer maps from

L]  to 
�+L] .

In the second stage we deal with the elements. Every

time we calculate the transfer map from the start point 
N
]

to the end 
�+N]  of the current element ( LL]] =

�
,

IQ

. ]] = ). All the coefficients ��]&
LM

 and ��]
LM

'
are known functions of ] , and we derive the dynamic
equations for the current element transfer map factors. So,

the transfer map from Q]  to IQ]  is a consequence of

transfer maps from N]  to 
�+N] .

 3  FRINGE QUADRUPOLES
OPTIMIZATION

The optimization scheme discussed above is an algorithm
for computer code LIE_OPT written in Fortan-90. Matrix
differential equations are computed by the Runge-Kutta-
Merson method of the 4-th order. Four-dimensional
integrals, used to calculate the beam macroscopic
parameters, are executed by the Monte-Carlo method.
Two-dimensional integrals, used to calculate space charge
potentials values, we evaluate by the Gauss method for
hyper-rectangles.

As an example we consider the optimization of a fringe
magnetic quadrupole channel without drifts.

Let an electron Gaussian beam current is =, 100 A, a

reference particle energy is =
�

( 1 MeV, initial centroid

parameters are =���[ 0, =���\ 0, initial sizes are

=���a[ 0.25×10-2 m, =���a\ 0.25×10-2 m, initial

divergences are of 1%.
Let a quadrupole channel consists of 10 lenses of the

same length.
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The goal is to obtain the optimal values of the gradient
J  and its second derivative J ′′  for each lens.

To facilitate our task we require each quadrupole
produces the same fringe field. It means that additional
constraints should be included in the penalty function.

Figure 1 depicts the initial and optimal gradient values
of each quadrupole in SI units. Solid line specifies the
initial focusing field configuration as a quadrupole super
triplet. Corresponding variations of the beam envelopes
along the transport channel in SI units is shown on figure
2 also in solid. Dashed lines on the figures 1 and 2
concern the optimal quantities.

At the end of a transport channel the initial value of
squared transverse rms emittance of a beam is

=�4 2.65×10-7 m/rad2, and the optimal one is

=RSW4 1.87×10-7 m/rad2. The optimal meaning of fringe

fields is specified by =′′J -0.2 Tl/m3. They are

responsible for the partial compensation of space charge
nonlinearities. It leads to some reduction of the rms
emittance growth.

Figure 1: Arrangements of qudrupoles and
their gradient values. .

Figure 2: Beam envelopes variations.

We should also mark another nontrivial result, that
follows from the solution of the optimal transport of high-
current continuous beam. It is possible to minimize the
transverse rms emittance growth without any increase of

the beam sizes while using in particular the fringed
magnetic quadrupoles.

 4  CONCLUSION
The optimization technique described here may be used in
computer simulations for high-current continuous beam
transport to provide the minimal emittance growth.

The major advantage of this approach is that it uses the
most general equations that govern the dynamics of
nonstationary space charge dominated beam. Also it is
important that focusing field nonlinearities may be
included in the group of controls.

The major drawback is that technique searches only
local minimum. Therefore in future work the procedure of
picking a starting point in the space of parameters will be
adjusted.
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