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Abstract the dipole moment around the circle, across the boxes, and
A proposed theoretical model incorporates in an averag follow vanations ofd; in each box: no need .to Inter-
change the boxes when evaluating their interaction.

form both the conventional head-tail effect in a single The dinole moments obev the betatron oscillation equa-
bunch (due to impedance elements in the machine), aﬁ]d P y 9
p

the linear part of the coherent beam-beam interaction, wi 0”[: "i]nttr;ee gausr.ant-Snyder normalization, with the cou-
the account of the finite bunch length. 9 '

dz + wgdl =-2 wbDik dk . (1)

1 INTRODUCTION Herewy is the betatron frequency, the machine azimuth is
For the strong head-tail effect in the beam-beam system wsed as quasi-time, and the dynamic mafiy, approxi-
construct here aaveraged versiomf the space-time do- mates the integral linear operator of collective interaction.
main formalism [1, 2], aiming at clarity and solvability, at First of all we use the ansatz = a;e~** !+ c.c. and stan-
the sacrifice of localized interaction effects. This holds imlard averaging to get rid af; in the shortened equations:
situations when all the mode spectrum of interest lies far .
off the (half)integer tunes, i.e. for machines where the syn- ia; = Dig ar . @

chrotron tune and collective tuneshifts are much less thag complex amplitudes; of oscillating dipole moments
fractional betatron tune. . sitting in each box, form a complete set of dynamic vari-
Applied to strong-strong collisions, the new theory preapjes of the averaged problem. In fagtare sampled val-

type; estimates show that the chromaticity is effective i, — (¢, 1), its total time derivative

control of its increments.
Oda .0a Oa Oa

a(yp,t) = EWLSO% = E+w5%

2 CIRCULANT EQUATIONS
The main difficulty of multi-particle models in the space—ShOUId be re_presented_ In our difference equations with a
orrectN-point approximation oBa(p,t)/0¢ — virax.

time domain is seen already in the educational 2—partic@0r eriodic functions~ is known to be a speciaiircu-
model in A. Chao’s text [3]: the wake acts in alternatinq perio NS . p'

) . .. . Sant matrix we define another circulait = —iw,7, and
mode on either the 1st or the 2nd particle, resulting in tim inally come from (2) to new equations
dependent coefficients in the equations of motion even with 2 q
the constant wake. ia; = (Cip + D) ag - (3)

The modelemployed in [2] and here is not based on real ) )
macroparticles which move longitudinally. It considers thdn what follows we will refer to Egs. (3) &Sirculant Equa-
synchrotron phase cirdelivided intoXV fixed equal boxes fions with the notation CE3 and CE2, for 3 and 2 boxes,
with fixed longitudinal position in the bunch, see Fig. 1 respectively. Their remarcable feature is that the circulant

These boxes are uniformly populated with particles eadRatrix C responsible for the free synchrobetatron motion,

The synchrobetatron mode spectrumemerging from

3/" 1 2 CE should first be checked for free oscillation. We start
- >> ) —-— C) with N = 3, Fig. 1a, and accordingly define the proper
1\. 3 b)

mode numbers: as —1, 0, +1. The 3-point circulant is:

: 0 -1 1
Figure 1: Division of the synchrotron phase into boxes, Cy = 1 Ws 1 0 -1 |, 4)
populated with particles; a) 3 divisions, CE3 formalism; V3 1 1 o0

b) 2 divisions for the CE2 formalism.
Substituting for the proper modes(t) = v;e~** in (3),
A variable dipole momend; is ascribed to eachth box, with D;; = 0, we find the mode frequenci€sand eigen-

i = 1,...,N. The synchrotron oscillation just transportsvectorsv from the eigensystem afs:

1For the needs of this paptire hollow beam modeill suffice, i.e. all Q = 0, UOT = ( 1, 1, 1 );
the particles are assumed to have the same amplitude of the synchrotron T o .
oscillation. Q1,1 = Fws, vy =(1, eF2mi/3 | FAmi/3)(5)
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Indeed, the free oscillation mode spectrum comprises thi the basis of these beam-beam modes all the matrices
betatron frequency and two its synchrotron sidebandef Section 4 are blockwise diagonal: the interaction pre-
wp, wp £ ws. Mind that all frequencies in the shortenedserves orthogonality of the-modes subset to the subset of
equations are counted from,, e.g. those in (5). The m= modes. Thus the characteristic equation of our 4-mode
mode eigenvectorsgive sampling of the Fourier harmon- system always breaks up into a pair of quadratic equations,
icse™¥, withm = +1, 0, —1 (cf. [3], Eq. (6.185)), at 3 in CE2 formalism (a pair of cubuc equations in CE3), mak-
equidistant values af;, according to division into 3 boxes. ing the mode analysis so clear.

In many cases coupling of only two modes in all the Finite bunch length | of the order of the beta-function
spectrum is important, those with the least separation iralues* at the IP, results in substantial betatron phase slip-
frequencies.N = 2 boxes (Fig. 1b) then suffice to repre-page over the interaction length. We include this effect in
sentthem. Coupling of these two modes to the other onestise phase lag parametgr(0 < y =~ [/28* < 1), and
neglected. Thus we come to the extremely simple circulantodify the beam-beam matrix:
equation CE2, where free motion of the only two modes in ) o i o _ 0 0
question is given by (3) witth = 0, and th& x 2 circulant: By = diag{1,e”"",1,e™""} - B - diag{1,e™", 1,e™"}.

c="%

( -1 1 ) ©) Eigenvalues ofC + B, give the new mode tunéssee
. 6
2

1 —1 (8) with w = 0. The mode coupling results in repulsion
between the mode tunes; they are always real and never
Its eigensystem reads: merge. Thusno instabilitycan appear in this beam-beam

||OdE|, unless we introduce some in pedal ce elements.
Do _1=0, —ws; = ( 1 +1 )
0,—1 ) ER) ’U07 1 ) .

The mode spectrum here consists of the betatron frequency 4 BEAM-BEAM INSTABILITY

wp and only one sidebang, —w; with exceptionally simple  The impedance element(sjnevitably present in the ma-
mode structure. Itis convenient to take = 1 hereafter, chine act on each of the colliding bunches individually; in
i.e. to measure all the frequencies in the unitspf CE2 formalism they are plugged in the wake mafiix

e.g. for the constant wakeve have:
3 BEAM-BEAM MODES

wl 1 0 1 0
Now our task is to study the linear coherent dipole beam- W= Ty ( 0 1 > ® < 2 1 ) ) @)
beam oscillations of longitudinally non-rigid bunches with
finite length and incoherent synchrotron motion. We havé is the beam currenty is the coherent tune slope.
to perform the same division into boxes in the both collid- The chromaticity x will cause the chromatic phase lag
ing bunches, like in Fig. 1, thus the set of variablgsn 2z o« —x; (cf. [3], Eq. (4.88)), of the trailing box oscilla-
(2) is duplicated. All the matrices of the previous sectiofion with respect to the leading one; we have to modify the

have to be replaced accordingly, i.e.: wake matrix accordingly:
I 1 —2ix —2ix : 2ix 2ix
C—><(1) ?)@C, W, = diag{1, e ,1,e }W-diag{l, e*** 1, e }.
In combination with the beam-beam interaction, impedan-
since they are relevant to each of the two bunches. ce elements completely change the situation. Consider first
The beam-beam matrix B (written for 2 boxes in each the case of very short bunches,< 1. The mode tunes
bunch) represents the linearized beam-beam force: are eigenvalues of' + B + W, putz = y = 01in (8).

The beam-beam tuneshift results in reduction of the modes

-2 0 1 1 0o, —1o merge threshold{b + 2w)I;, = 1, the closest
B= _br 0 -2 1 1 one. The head-tail + beam-beam problem corresponding to
2 1 1 -2 0 | this short bunch limit was studied numerically in the 2
1 1 0 -2 particle model [4], predictions on possible reduction of the

. , ) head-tail threshold due to beam-beam collisions and some
We consider here equal f:urrel_it$n each bunchb is the of the results agree with ours.
beam-beam tune slope in units of the synchrotron WUNe, tpe petatron phase slippageaccounting for the finite
bI = £/@Qs, & is the conventional beam-beam parametef, -, length in the beam-beam matBy gives a new in-

F_our proper modes, doubly degenerate, are given by tkslfability, when acts in combination with wakes; we can see
eigensystem of’ + B:

2Saving the space, we omit here expressions for the mode tunes since

Oﬂ') Qo = 2bI Ug;r = (1’ 1,-1, _1) , they are available from the general formula (8) presented at the end of
T Section 4, being its particular cases.
0g) Qs = 0 v, = (1, 1, 1, 1), Swith a known wake function other than constant the coefficients in
~10) Q_1, = bI—1 UZM =(1,-1, 1,-1), W are available from the complete theory [2]. Or they may be considered
as phenomenological coefficients, to be tuned to fit experimentally known
—17) Q 1y = bI—1 o7, _=(1,-1,-1, 1). head-tail parameters for a particular machine.
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this from the eigenvalues af + B, + W (putz = 0 09 0.5
in (8)). Simple analysis shows that modés and — 1 04 04
are unstablewithout a current threshold, as if in conven- -3 03
tional head-tail instability, see Fig. 2, left. However, 0. 02
their increments start quadratically at low beam current: ™ 01
b00,—1x = ImQ ~ bwl*siny cos y; 6_14,0n = —O00,~1x- -2 -1 0 1 2 -2 -1 0 1 2
Changing our normalized units to ordinary ones, we have:
§ = wsd, bI = £/Qs, wI — AQ.on/Qs and rewrite the 0.5 05
increment via the revolution peridh): 04 04
0.3 0.3
§ =~ bwl?siny cosy — 2mEAQ con/ToQs. 0.2 0.2
0.1 0.1
One should take he @, > ¢, AQ..n largeenough,tostay 5 17 o 1 2 2 -1 o0 1 2

in the validity range of our 2-mode model. At high currents
& ~ wg roughly, we deal with dastinstability. Figure 3: |Im{| vs. the chromatic phase at two fixed
beam currentg, left column:I = 0.8, right column:I =

o 006 1; for two bunch lengthg, top row:y = 0.2, bottom row:

o1 / b y = 0.5. Other parameters are the same as in Fig. 2. All
0 ol theo modes are shown in thick lines,modes in thin lines.

- 0. - 0.02

B g; L -0.04

03 o 5 CONCLUSION

0O 02 04 06 08 1 12 0 02 04 06 08 1 12

A new formalism with Circulant Equations predicts sta-
Figure 2: Effect of the positive chromaticity on the modeyjlity of coherent dipole oscillations of non-rigid collid-
increments (plotted vs. the beam current) for combined afig bunches with finite length, in the linear beam-beam
tion of the wake and betatron phase slippage in collisioRgrce model. Adding wakefields to the above strong-strong
Left: = 0, right: 2 = —1.42. Parametersin (8 = 0.2, model, we find in such a combinati@new beam-beam
b=1.1,w = 1. All'the o modes are shown in thick lines, instability of head-tail type, arising without any current
m modes in thin lines, the 0 modes in green, the —1 modesreshold. Itpossible curés the positive chromaticity.
in black. Indeed, rathetarge positive chromaticitiesre known

to help in improvement of the beam-beam performance on

Physically, the phase slippage is somewhat similar to th&isting machines, e.g. VEPP-2M.

chromatic phase effect. So, the chromaticity tuning gives Any instability found in a linear theory is not necessarily
us a possible cure of this instability. The chromatic phasethal for a highly nonlinear beam-beam system. The am-
lagz is involved in both beam-beam and impedance actioplitude growth is most likely to saturate at a certain level,
and therefore the eigenvalues@t B, ., + W, are now put the onset of the instability may be a detriment to a low

needed: emittance regime.
. . Discussions with V.Parkhomchuk who has drawn my at-
Qor,1r = —5(1—Bb—w)I F (1+bIe**¥))2  tention to the beam-beam problem with non-rigid bunches,
(1 + (be™2 — 2w)I6—2ix)%) are gratefully acknowledged.

(1 — (be ¥ + Qw)Iefﬁz)%) .
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