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Abstract

The flip-flop effect with the linearized beam-beam force is
formulated through self-consistent�-functions and equilib-
rium emittances which are both affected by collision. We
give the results of two models of emittance dependence.
The effect of finite bunch length is also discussed.

1 INTRODUCTION

From many observations of the beam-beam effects on ex-
isting e+e� colliders, it is known that under some condi-
tions the sizes of opposing bunches become very different.
This phenomenon is called the flip-flop effect. Such a state
is not stable and the bunches may exchange their sizes. The
flip-flop effect leads to reduction of the luminosity, because
of the difference in bunch sizes resulting in reduction of the
effective interaction area.

The problem is greatly simplified bylinearizationof the
beam-beam force; it has been studied in terms of evolution
of the 2nd moments of the beam distribution, involving the
radiation effects: damping and quantum excitation [1, 2, 3].

Another way to understand this problem is formulation
in terms of self-consistent dynamic�-functions of collid-
ing beams at the interaction point(IP) [4]. The equilibrium
emittances of the bunches are affected by the linear part
of the beam-beam force: action of the opposing bunch is
roughly equivalent to insertion of a (thin) lens modifying
the arc lattice [5]. So, a correctaccount for thesedynamic
emittance variations should be done in a self-consistent
way.

This paper gives results of the self-consistent model for
round colliding beams, and calculation of the equilibrium
radiation emittance with the thin lens insertion. We also
discuss the simple model representing the bunch length ef-
fect.

2 SELF-CONSISTENT �-FUNCTIONS

Consider a collider lattice with one IP and the betatron
phase advance on the arc�0 = 2��. We can get the result-
ing matrix of one revolutionM = M0 � F multiplying the
arc matrixM0 by the thin lens matrixF , involving the size
of the opposing bunch and its intensity expressed through
the nominal beam-beam parameter�0. FromM we obtain
new values of� and�-function, modified by collision. Let
us consider equal intensities of the colliding bunches (equal
�0). After simple calculations [4], using a convenient no-
tation: x = 2��0, c = cot 2��, bi = ��=�i, andei for
the normalized emittances (herei = 1; 2 refer to the two
bunches in collision), we get equations on self-consistent

�-functions in the special case of round beams:

b21 = 1 + 2xc
b2
e2
� x2

b22
e22

b22 = 1 + 2xc
b1
e1
� x2

b21
e21
: (1)

The problem is periodic in� with the period1=2, therefore
we only consider0 < � < 1=2 in what follows.

We start with the case of constant emittances. Unequal
solutions of (1)bi correspond to the flip-flop situation.
They are real and positive when� 2 (0; 1=4) andx be-
longs to the interval:s

2 + 3c2 + c
p
8 + 9c2

2(1 + c2)
< x < c +

p
1 + c2: (2)

For � 2 (1=4; 1=2) the inequalities should be reversed.
Small� are of predominant interest for a high beam-beam
performance. One can obtain the threshold value ofx for
small � by taking the limitc ! 1 in the LHS of (2):
xth =

p
3:

This is a very large and unrealistic value ofx, which
corresponds to�0 ' 0:26.

Another way to getxth is the graphical method [6], ap-
plied to (1): we considerb1 as function ofb2, and evaluate
the derivative@b1=@b2 at the point of equalbi, thus inspect-
ing a possibility for unequal solutions to appear. Then the
flip-flop thresholdx = xth satisfies the equation:

@b1
@b2

����
b1=b2

= �1; (3)

yielding the samexth as in the LHS of (2).
In contrast to the above solution, one may expect anon-

round flip-flop state, e.g. a cross-shaped one:b1x =
b2y; b1y = b2x. Using (3) we obtain this threshold:

x � xth =

s
4 + 5c2 + c

p
24 + 25c2

2(1 + c2)

It appears to be even higher than that for the round flip-flop
state: the round beam shape seems to be “flip-proof”, cf.
[7].

3 RADIATION EMITTANCE

Assuming the emittances unchanged by collision, we see
from the above section that the flip-flop thresholds are
rather high in terms of�0.

Let us now evaluate the radiation emittance of the bunch
with a thin lens insertion at the IP, representing the linear
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effect of collision. Zero dispersion at the IP is assumed for
simplicity.

The equilibrium emittance is determined by the one-turn
average of the Courant-Snyder quadratic form with the dis-
persion function:

H(s) = �(s) �0(s)2 + 2�(s) �(s)�0(s) + 
(s) �(s)2 :

The lens insertion modifies the Twiss parameters involved
in H(s) thus changing the radiation emittance. In the Flo-
quet parametrizationH(s) = jW (s)j2, the appropriate
Wronskian reads:

W (s) =

����
�(s) w(s)
�0(s) w0(s) + i=w(s)

���� e
i�;

and the modified Floquet functionw(s) ei� should be de-
composed via the basis of the unperturbed Floquet vectors
at the IP, then propagated through the unperturbed arc to get
the modified vector on the current azimuth of integrations.
Thus we obtain the effect of collision:

H(s)

H0(s)
=

1+p cot 2��+p csc 2�� cos 2(argW0(s)���)p
1 + 2 p cot 2�� � p2

wherep = P��=2 is the normalized strength of the lens,
and the0 subscript marks the quantities relevant to the un-
perturbed lattice.

The1 + p cot 2�� term in the numerator gives positive
definite contribution to the radiation emittance, and com-
pares to the result of [5]. But the 2nd term, proportional
to cos 2(argW0(s) � ��), depends on the arc lattice, and
generally its contribution to the radiation integral does not
vanish. It may well override the effect the 1st term in some
particular lattices, resulting in a linear slope of either sign
in the emittance dependence on�0, contradicting to [2, 5].

4 MODELS OF EMITTANCE
VARIATION

We can implement the above conclusion in simple models
of variable emittance, to be used jointly with (1) for the
self-consistent analysis.

The 1st modelassumes the linear variation of emittance
with the strength of the lens of the opposite bunch: we have
then for the normalized emittances:

e1 = 1 + k
b2
e2

e2 = 1 + k
b1
e1
; (4)

k is the linear slope coefficient; it should be kept not too
large for our model to be valid. We solve (4) fore1 ande2
first, substitute these solutions into (1) to obtain two equa-
tions on the two variables (b1; b2):

b2
1

= 1 +
4b2x(c(1 + (b1 � b2)k +

p
D)� b2x)

(1 + (b1 � b2)k +
p
D)2

b2
2

= 1 +
4b1x(c(1 + (b2 � b1)k +

p
D)� b1x)

(1 + (b2 � b1)k +
p
D)2

(5)

whereD = 4b2k + (1 + (b1 � b2)k)
2.

Now we may solve the problem using method [6]. With
k > 0, the flip-flop situation appears only at high values
of x = 2��0 (Fig.1). In this case the values of the self-
consistent�-functions are small enough and the emittances
exceed their nominal values.
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Figure 1: The flip-flop thresholdxth vs. the positive slope
k in (5),� = 0:01 (top),� = 0:1 (bottom).

The casek < 0 is more interesting. There is some lim-
iting value ofx, which depends on the values ofk and�.
If x is above this limit, the system (5) has no solutions.
And whenx is close to its threshold, there is a range of
x, where (5) has two different solutions with equalbi. We
may avoid this situation by increasing the value of�. Be-
forex approaches its maximal value, (5) has one solution
with equalbi.

The 2nd model: we assume linear variation of the beam
sizes with the strength of the lens of opposite bunch. After
some calculations, this model is expressed by equations

e1 = b1(1 + kx
b2
e2

)2;

e2 = b2(1 + kx
b1
e1

)2; (6)

reducible to 2 variablese1=b1 ande2=b2 only. Hence, we
solve (6) for these and substitute into (1) to obtain solutions
for bi.

The resultant of two equations in (6) has simple factor-
ization:

R = (e2
2
+ 2b2e2kx+ b2

2
k2x2 � b2e2k

2x2) �
(e3

2
� b2e

2

2
� 2b2

2
e2kx� b3

2
k2x2):

The first factor gives two solutions:

e2 =
1

2
b2kx(kx� 2�

p
kx(kx� 4)): (7)

So, fork > 0 the flip-flop threshold is high: we needkx >
4 for e1;2 to be real. The second factor inR has one real
root, if k > 0. It corresponds to normal solutionb1 = b2.

Another situation is in the case ofk < 0. Now (7) are al-
ways real and positive and correspond to the flip-flop solu-
tions. After substitution (7) into (1) we getb2

1;2 and require
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that they be positive; this yields the condition on existence
of the flip-flop solutions:

x < x(k) = tan�� (cot�� + 1=k)2 ; tan�� < �k :

These expressions indicate how to avoid the unwanted
flip-flop situation: at somex and a given value ofk in the
linear dependence of emittances, we may raise the tune to
shift it in the area of only equal solutions, crossing the flip-
flop border shown in Fig 2.
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Figure 2: The flip-flop thresholdxth vs. the tune� in the
case ofk < 0 in (6), k = �0:8. The flip-flop area lies
under the curve.

5 EFFECT OF THE BUNCH LENGTH

In this section we present the constant emittance model, ac-
counting for the effect of bunch length in collision by split-
ting either of the colliding bunches into 2 equal infinitely
short ones spaced byl (in units of�0):

l
4

23
1

I P

l

The interaction process then has three phases: 1) colli-
sion of particles 2 and 3 at the IP; then 2a) collision of 2
and 1, and 2b) collision of 3 and 4 at the points positioned
at the distance of�l=2 from the IP; finally, 3) collision of
particles 1 and 4 at the IP. All values of the Twiss parame-
ters� and� for each particle are taken at the IP and traced
to the respective collision point.

From the matrix of one revolution for each particleMi

(i = 1::4) we get the new values of the phase advance�, �-
and�-functions and then obtain the equations on the self-
consistent�-functions. This system is very complicated
and can only be studied numerically. The first conclusion:
if l 6= 0, there is no situation, when all�-functions are
equal. We have the state in our system, when parameters of
front and back particles are equal. We define the flip-flop
situation when all the 4 parameters are different; the thresh-
old for these solutions to appear is high (Fig.3). Therefore
we conclude that the finite bunch length effect is not detri-
mental in the round beam case.
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Figure 3: The flip-flop thresholdxth vs. l in the model of
the bunch length.

6 CONCLUSION

The flip-flop effect is studied in terms of self-consistent
�-function in the case, when the emittances of colliding
bunches are influenced by the linear part of the beam-beam
force. Evaluation of the radiation emittance of the bunch is
presented in the case of one additional thin lens at the IP,
with the emphasis on the term omitted in [5].

We have presented two models of variable emittances.
One of them, when the emittance has a linear dependence
on the strength of the lens of opposite bunch, gives high
flip-flop thresholds in the area of positive slopek in (4)
and no but equal sizes of colliding bunches ifk < 0 and
the beam intensity is below a certain limit. The second
model (6) also predicts low flip-flop thresholds only when
we assumek < 0, i.e. the size of the bunch is decreased
by the force of opposite lens. We can avoid the flip-flop
situation here by the working point manoeuvre. However,
lattices withk > 0 seem to be generally preferable against
the flip-flop effect.

The influence of the bunch length on the flip-flop effect
thresholds in our simple model is weak.

We acknowledge useful discussions of the subject with
P.M.Ivanov, I.A.Koop, I.N.Nesterenko and D.V.Pestrikov.
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