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Abstract G-functions in the special case of round beams:
The flip-flop effect with the linearized beam-beam force is . by 5 b3
formulated through self-consistefifunctions and equilib- by = 1+ 2“; -z 2

rium emittances which are both affected by collision. We b B
give the results of two models of emittance dependence. b o= 1+ Qwe— — gL, (1)

2
The effect of finite bunch length is also discussed. €1 €

The problem is periodic in with the periodl /2, therefore
1 INTRODUCTION we only considef < v < 1/2 in what follows.
We start with the case of constant emittances. Unequal
From many observations of the beam-beam effects on egelutions of (1)b; correspond to the flip-flop situation.
isting e"e~ colliders, it is known that under some condi-They are real and positive when € (0,1/4) andz be-
tions the sizes of opposing bunches become very differendngs to the interval:
This phenomenon is called the flip-flop effect. Such a state
is not stable and the bunches may exchange their sizes. The 24 3¢2+ /8 + 9c2
flip-flop effect leads to reduction of the luminosity, because 2(1+ ¢2)
of the difference in bunch sizes resulting in reduction of the
effective interaction area. Forv € (1/4,1/2) the inequalities should be reversed.
The problem is greatly simplified Hinearizationof the  Small» are of predominant interest for a high beam-beam
beam-beam force; it has been studied in terms of evolutiggerformance. One can obtain the threshold value fufr
of the 2nd moments of the beam distribution, involving th&mall » by taking the limitc — oo in the LHS of (2):
radiation effects: damping and quantum excitation [1, 2, 3}, = /3.
Another way to understand this problem is formulation This is a very large and unrealistic value ©f which
in terms of self-consistent dynamitfunctions of collid- corresponds t§, ~ 0.26.
ing beams at the interaction point(IP) [4]. The equilibrium Another way to get:;, is the graphical method [6], ap-
emittances of the bunches are affected by the linear patied to (1): we considek; as function ob, and evaluate
of the beam-beam force: action of the opposing bunch the derivativeib, /9b at the point of equdl;, thus inspect-
roughly equivalent to insertion of a (thin) lens modifyinging a possibility for unequal solutions to appear. Then the
the arc lattice [5]. So, a correatcount for thesdynamic flip-flop thresholdr = «;; satisfies the equation:
emittance variations should be done in a self-consistent
way. 9by
This paper gives results of the self-consistent model for by
round colliding beams, and calculation of the equilibrium
radiation emittance with the thin lens insertion. We alsg

discuss the simple model representing the bunch length %‘und flip-flop state, e.g. a cross-shaped onle;, =

<z<c+vV1i+cZ (2

= _L (3)

bl1=b2

ielding the same;;, as in the LHS of (2).
In contrast to the above solution, one may expeatbia-

fect. bay, b1y = ba2,. Using (3) we obtain this threshold:
2 SELF-CONSISTENT -FUNCTIONS S ¢4 + 5¢2 + /24 4 2562
T 2 Tth = 5
Consider a collider lattice with one IP and the betatron 2(1+¢%)

phase advance on the arg = 27v. We can get the result- |t appears to be even higher than that for the round flip-flop

ing matrix of one revolutiol = M, - F' multiplyingthe  state: the round beam shape seems to be “flip-proof”, cf.
arc matrixiMy by the thin lens matri¥”, involving the size  [7]

of the opposing bunch and its intensity expressed through

the nominal beam-beam param%@r From A/ we obtain 3 RADIATION EMITTANCE

new values of: ands-function, modified by collision. Let

us consider equal intensities of the colliding bunches (equaksuming the emittances unchanged by collision, we see
&o). After simple calculations [4], using a convenient nofrom the above section that the flip-flop thresholds are
tation: @ = 2x&y, ¢ = cot 27w, b; = 5*/B;, ande; for  rather highin terms of;.

the normalized emittances (here= 1,2 refer to the two Let us now evaluate the radiation emittance of the bunch
bunches in collision), we get equations on self-consistemiith a thin lens insertion at the IP, representing the linear
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effect of collision. Zero dispersion at the IP is assumed favhereD = 4bsk + (1 + (b1 — ba)k)?.

simplicity. Now we may solve the problem using method [6]. With
The equilibrium emittance is determined by the one-turd > 0, the flip-flop situation appears only at high values

average of the Courant-Snyder quadratic form with the disf x = 2r¢, (Fig.1). In this case the values of the self-

persion function: consistenp-functions are small enough and the emittances

H(s) = 8(s) 1/ ()% + 2a(s) n(s)' () +v(s) n(s)?. exceed their nominal values.

The lens insertion modifies the Twiss parameters involved 45 X
in H (s) thus changing the radiation emittance. In the Flo- 4 L
quet parametrizatiori (s) = |W(s)|?, the appropriate 35 e
Wronskian reads: X 22 +
n(s) w(s) i% .2 ’ -
Wis) = ; e, R

=1 6) W) +ifus) 5 e
and the modified Floquet function(s) ¢’ should be de- 01 02 03 04 0%
composed via the basis of the unperturbed Floquet vectors k

at the IP, then propagated through the unperturbed arc to get
the modified vector on the current azimuth of integration rigyre 1: The flip-flop threshold;, vs. the positive slope

Thus we obtain the effect of collision: kin (5),» = 0.01 (top),» = 0.1 (bottom).
H(s) 14pcot2rv4pcsc2rvcos2(arg Wo(s)—nv)
Ho(s) 1+ 2pcot 2y — p? The case: < 0 is more interesting. There is some lim-

_ . . iting value ofz, which depends on the values /ofandv.
wherep = P"/2 s the normalized strength of the Ier‘S’If z is above this limit, the system (5) has no solutions.

and thed subspnpt marks the quantities relevant to the UNA&nd whenz is close to its threshold, there is a range of
perturbed lattice.

. . o h h ifferent solutions with | Wi
The 1 + pcot 2rv term in the numerator gives posmvex’ where (5) has two different solutions with equal We

definite contribution to the radiation emittance, and commay avoid this situation by increasing the value-ofBe-
' ~~fore x approaches its maximal value, (5) has one solution
pares to the result of [5]. But the 2nd term, proportional v app ®)

. ith 16;.
to cos 2(arg Wo(s) — mv), depends on the arc lattice, P

¢ I o The 2nd modelwe assume linear variation of the beam
generally its contribution to the radiation integral does not. : :
) ) . Sizes with the strength of the lens of opposite bunch. After
vanish. It may well override the effect the 1st term in somé& . . : .
; 4 . : . . Some calculations, this model is expressed by equations
particular lattices, resulting in a linear slope of either sign

in the emittance dependence &n contradicting to [2, 5]. by
€1 = bl(l + k’l‘e—) ;
4 MODELS OF EMITTANCE bi
2
VARIATION 2 = bo(l+ ko), (6)

we can implement the above concl'ug,ion inlsimple mOdeL%ducible to 2 variables; /b, ande, /b only. Hence, we
of varlabI.e em|ttance,. to be used jointly with (1) for thesolve (6) for these and substitute into (1) to obtain solutions
self-consistent analysis. for

'The 1st modessumes the linear variation of emittance The resultant of two equations in (6) has simple factor-
with the strength of the lens of the opposite bunch: we ha\fgation'
then for the normalized emittances: '

b;.

el = 14 kb—2 R = (e% + 2bgeskx 4 b3k x? — bzezkzxz) X
€2 (€3 — boed — 2bleskr — b3k x?).
by
= 1+k— 4 . .
e + er’ “) The first factor gives two solutions:
k is the linear slope coefficient; it should be kept not too 1
large for our model to be valid. We solve (4) far ande, eg = §b2kx(kzx — 2+ Vkz(kz —4)). (7)
first, substitute these solutions into (1) to obtain two equa-
tions on the two variable${;, b-): So, fork > 0 the flip-flop threshold is high: we neéd: >

4 for e, - to be real. The second factor it has one real

2 o= 1+ Aba(e(1 + (b = ba)k + VD) = baa) root, if k > 0. It corresponds to normal solution = b-.
(1+ (b1 = b2)k +VD)? Another situation is in the case bf< 0. Now (7) are al-
o= 14 4byx(c(1 4 (by — b1)k + /D) — by x) (5) ways real and positive and correspond to the flip-flop solu-
E (1+ (by — b1)k +/D)? tions. After substitution (7) into (1) we géf , and require
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that they be positive; this yields the condition on existence 22
of the flip-flop solutions: 2
r < x(k) = tan7v (cot mv 4 1/k)?; tanmr < —k . 18 . et )
X
1.6
These expressions indicate how to avoid the unwanted
flip-flop situation: at some and a given value of in the 14
linear dependence of emittances, we may raise the tune to
shift it in the area of only equal solutions, crossing the flip- 125 02040608 1 1214

flop border shown in Fig 2. !

Figure 3: The flip-flop threshold,; vs. { in the model of

1172 the bunch length.
125
x 1 6 CONCLUSION

075

05 The flip-flop effect is studied in terms of self-consistent

025 B-function in the case, when the emittances of colliding
0 bunches are influenced by the linear part of the beam-beam
0l 055 02 0% 03 force. Evaluation of the radiation emittance of the bunch is

Betatron Tune presented in the case of one additional thin lens at the IP,
with the emphasis on the term omitted in [5].
Figure 2: The flip-flop threshold; vs. the tune in the We have presented two models of variable emittances.
case ofk < 0in (6), &k = —0.8. The flip-flop area lies One of them, when the emittance has a linear dependence
under the curve. on the strength of the lens of opposite bunch, gives high
flip-flop thresholds in the area of positive slopdn (4)
and no but equal sizes of colliding buncheg ik 0 and
5 EFFECT OF THE BUNCH LENGTH the beam intensity is below a certain limit. The second
model (6) also predicts low flip-flop thresholds only when
In this section we present the constant emittance model, age assumé: < 0, i.e. the size of the bunch is decreased
counting for the effect of bunch length in collision by split-py the force of opposite lens. We can avoid the flip-flop
ting either of the colliding bunches into 2 equal infinitelysituation here by the working point manoeuvre. However,
short ones spaced byin units of 3;): lattices withk > 0 seem to be generally preferable against
the flip-flop effect.
L) L, The influence of the bunch length on the flip-flop effect
thresholds in our simple model is weak.
“ We acknowledge useful discussions of the subject with
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