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Abstract

We present a simplified analytical model that shows how
fringe field aberrations depend on a quadrupole magnet
aperture. It is found that for a fixed magnet length and focal
length the fringe field aberrations are smaller if the magnet
aperture is larger (i.e. if the fringes are more extended).

1 INTRODUCTION

In spite of the progress made in understanding the effects
of magnet fringe fields there still seems to be some con-
fusion about the way the aberrations scale with the fringe
extension. A popular belief in the accelerator physics com-
munity is that the fringe extension should be contained as
much as possible. Although there may be some good reas-
ons for that belief, limiting the strength of aberrations is
not one of them. A source for this misconception may have
been the fact that the intrinsic aberrations associated with
the fringes increase as the length of a magnet decreases.
That is, given for instance two quadrupoles with the same
focal length and same aperture, the aberrations are larger
for the magnet with shorter length. Short magnets are asso-
ciated with relatively more extended fringe fields and this
fact may have generated the wrong perception that the more
extended the fringes are the higher the aberrations. In fact
the opposite turns out to be true. A clarification of this issue
is desirable because short-length, large-aperture magnets
are increasingly being used in a number of applications. In
this paper we calculate and compare the third order aber-
rations associated with the fringes of quadrupole magnets
having the same length and same integrated on-axis gradi-
ent but different apertures (and therefore different exten-
sion of the fringes). The calculation is done for a simpli-
fied 1D model for which one can calculate the third order
aberrations associated with the fringes analytically. The
approximated analytical formulas are compared with an ex-
act numerical computation carried out using MARYLIE [1].
We find that the aberrations decrease exponentially with the
square root of the magnet aperture.

2 TRANSFER MAP COMPUTATION

A convenient way to represent the dynamics of a charged
particle through a magnet is to write the associated transfer
map in the Lie form [2]:

M = · · · exp(: f5 :) exp(: f4 :) exp(: f3 :)M2. (1)

∗Work supported by the U.S. Department of Energy.
† venturin@physics.umd.edu

The linear content of the dynamics is described byM2

while the nonlinear part is represented by the Lie gener-
atorsfn. Thefn are homogeneous polynomials of ordern
in the dynamical variables and: fn : are the Lie operators
associated withfn, i.e. : fn : g = [f, g] with [·, ·] being
the Poisson brackets.

A map can be calculated by solving the canonical equa-
tion M′ = M : − H :. In particular the linear part of the
map is a solution of

M′
2 = M2 : − H2 : . (2)

Here H2 denotes the quadratic part of the Hamiltonain,
which we assume can be written as a seriesH = H2 +
H3 +H4 + · · · with H3 being the cubic part,H4 the quartic
part etc. . It can be shown thatH2 contributes toM2 and
all thefn; H3 contributes to thefn with n = 3 and higher
and so on. For the case considered in this paperH3 = 0,
and therefore the first nonlinear generator isf4. It can be
shown [2] that:

f4 = −
∫ zf

zi

Mzi→z
2 H4(z)dz, (3)

where withMzi→z
2 we indicate the solution of (2) from

z = zi (some point before the magnet entry) tozf (some
point past the magnet exit). The generatorf4 contributes
to the third and higher order aberrations that appear in a
Taylor representation of the transfer map. We now consider
a 1-D model of charged particle dynamics in a quadrupole
magnet described by the Hamiltonian:

H =
p2

x

2
+

x2

2
k(z) +

p4
x

8
+

x4

12
k′′(z) +

x3px

4
k′(z). (4)

The focusing functionk(x) equals the magnetic rigidity
times the on-axis gradient:k(x) = (q/po)G(z). Apart
from the reduced dimensionality and omission of chro-
matic terms the Hamiltonian above is exact through4th or-
der. By indicating withmij(z) the matrix representation of
the linear part of the map, the4th order Lie generator can
be written asf4 = fgeom

4 + fdyn
4 where:

fgeom
4 = −1

8

∫ zf

zi

(m21x + m22px)4dz. (5)

and

fdyn
4 = −1

4

∫ zf

zi

[
k′′(z)

3
M2x

4 + k′(z)M2pxx3

]
dz.

(6)
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Figure 1: Profiles of the focusing function (9) for different
values of the aspect ratioγ = ; the quadrupole semi-
length isl = .022 m. The integrals of the various curves
are the same.
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Figure 2: Approximation of the focusing function with a
stepwise function.

After an integration by parts, use of Eq. (2) and the rela-
tionship

: H2 : x4 = [H2, x
4] = [

1
2
p2

x +
1
2
k(z)x2, x4] = −4x3px,

(7)
finally yield

fdyn
4 =

1
12

∫ zf

zi

k′(z)M2x
3pxdz

=
1
12

∫ zf

zi

k′(z)(m11x+m12px)3(m21x + m22px)dz.

(8)

Becausefgeom
4 does not depend on the quadrupole fields,

in the following we considerfdyn
4 only. Our goal is now to

evaluate the integral (8) for a specific choice ofk(z).

3 COMPUTING THE ABERRATIONS

Consider a family of quadrupoles with focusing function

k(z,R) = g0[G(z + l) − G(z − l)], (9)

and

G(t) =
1
2

R4t

(R2 + t2)
5
2

+
1
3

t(3R2 + 2t2)
(R2 + t2)

3
2

, (10)

whereR and l are the magnet aperture and semilength.
A focusing function of the form (9) is typical of iron-
free quadrupole magnets like those used in the Electron
Ring under construction at the University of Maryland
[3]. Here we are interested in comparing quadrupole mag-
nets that have the same length2l but different aperture
2R. The function (9) is defined in such a way that the
z-integral (and therefore the magnet focal length in first
approximation) does not depend on the quadrupole aper-
ture:

∫
k(z,R)dz = 8g0l/3. Physically this is achieved

by powering the magnets in a way dependent on their aper-
ture. The profiles for 4 different choices of the apertures are
shown in Fig 1. The `aspect ratio'γ is defined as the ratio
between the magnet length and aperture:γ = l/R. Notice
thatγ → ∞ (i.e. R → 0) represents the hard edge limit.
In order to compute the integral (8) we first need to find the
linear part of the map. We do the calculation in an approx-
imated manner by assuming that we can representk(z) as a
stepwise function, (see Fig. 2). Two parameters need to be
specified: the lengthls and the peak valueko of kstep(z).
A constraint we impose is that the integral ofk(z) equals
that ofkstep(z). Therefore we need to specify eitherko or
ls, for any given value of the aspect ratio. We can expect
that as the aspect ratio decreases and the extension of the
fringes increases,ls should become larger andko smaller.
A possible choice is to use the standard definition of a mag-
net effective length and write:ko = k(z = 0, R). Instead
we use a slightly modified expression

ko = k
(
z = 0, R(1 + γγ−1

1 )
)

(11)

to allow for the presence of a free parameterγ1 to be de-
termined later. The lengthls is then determined by requir-
ing that lsko is the same as the integrated gradient. With
these assumptions the elementsmij of the transfer matrix
from z = −L to z ∈ [−ls, ls] arem11 = cosω(z + ls),
m21 = −ω sinω(z + ls), etc., with ω =

√
ko. As a

further approximation we assume that these expressions
for the elements of the transfer matrix can be extended to
|z| > ls. This is plausible because the error we introduce
in this way is small ask(z) decays rapidly for|z| > ls. For
the same reason we can approximatezi = −L ' −∞ and
zf = L ' ∞ in the the integral (8). The Lie generator
for the third order aberrations for the motion in thex plane
consists of 5 monomials:

fdyn
4 = x4fdyn

x4 + x3pxfdyn
x3px

+ x2p2
xfdyn

x2p2
x

(12)

+xp3
xfdyn

xp3
x

+ p4
xfdyn

p4
x

.

Let us focus onfdyn
x4 . By using the approximations we have

indicated above we have:

fdyn
x4 ' −1

12

∫ ∞

−∞
k′(z)[cosω(z + ls)]3[ω sinω(z + ls)]dz.

(13)
This integral can be expressed in terms of the modified
Bessel functionsK0 andK1 . Having introduced the defin-

l /R
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Figure 3: Lie generatorfdyn
x4 (in units ofm−4) as a function

of the aperture ratioR/l for various values of the phase
advanceΦ (expressed in deg). The solid lines represent
Eq. (15), the dots are from the MARYLIE calculation.

ition of the functionI(Ω)

I(Ω) ≡
∫ ∞

−∞
k′(z) sin(Ωz)dz =

−4l

3
goΩR sin(Ωl) ×

{[
4 + (ΩR)2

]
K1(ΩR) + 2(ΩR)K0(ΩR)

}
,

(14)

we find

fdyn
x4 ' ω

48
[I(2ω) cosΦ +

1
2
I(4ω) cos 2Φ], (15)

whereΦ = 2ωls is the phase advance betweenz = −ls
andz = ls. In a similar way we can calculate

fdyn
x3px

' −I(2ω)
24

[sinΦ + 2(L − ls)ω cosΦ]

−I(4ω)
24

[sin 2Φ + (L − ls)ω cos 2Φ],(16)

as well as the remaining coefficients in (12) which we not
report here. They all contain terms proportional to either
I(2ω) or I(4ω). From the expression above one can re-
cover the aberrations in the hard edge limitR → 0 (with l
kept fixed). We have

lim
R→0

I(Ω) = −ω2 sin(Ωl), (17)

and hence for example:

fdyn
x4 = −ω3

48
[sin 2Φ +

1
2

sin 4Φ]. (18)

In the hard edge limit the quantitiesω and Φ appearing
in the expressions above are related by2ωl = Φ because
ls = l. In the hard edge limit these expressions are exact
and are consistent with the analytical formulas found in the
literature. The limiting form in the infinitely soft limit can
also be written using

lim
R→∞

I(Ω) = −4l

3
go

√
π

2
sin(Ωl) exp(−ΩR) ×

[
4(ΩR)

1
2 + 2(ΩR)

3
2 + (ΩR)

5
2

]
.(19)
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Figure 4: Lie generatorfdyn
x3px

(in units ofm−3) as a func-
tion of the aperture ratioR/l for various values of the phase
advanceΦ (expressed in deg). The solid lines represent
Eq. (15) the dots are from the MARYLIE calculation.

Notice that the aberrations decrease exponentially with
ΩR. For large values of R we haveω ∝ 1/

√
R and there-

fore I(2ω) ∝ exp(−√
R × const). The limiting expres-

sion (19) deviates less than a few percents from the exact
expression (14) forΩR ≥ 2. The Lie generatorsfdyn

x4 an

fdyn
x3px

as functions of the magnet aperture ratio (= R/l, i.e.
the inverse of the aspect ratioγ) are shown in Figs. 3 and
4. The solid lines are plots of the analytical formulas for
various values of the phase advanceΦ [corresponding to
various choices of the constantgo in the expression (9) for
k(z)]. Comparison is made with an exact numerical calcu-
lation of the transfer map carried out with MARYLIE (dots).
The best agreement is obtained with a valueγ1 = 1/1.17
for the free paramererγ1. Notice how the qualitative de-
pendence of the generators on the aperture ratio is well de-
scribed by the analytical formulas.

4 CONCLUSION

The conclusion of this paper is that for the kind of quad-
rupole magnets considered here less extended fringes carry
larger aberrations. The integral (6) defining the strength of
the aberrations depends on two opposing factors: the size
of the fringe field region (i.e. the interval inz in which the
integral is non vanishing) and the derivatives of the focus-
ing function. As a quadrupole magnet aperture decreases
the fringe extension decreases but the derivative of the fo-
cusing function increases, and between the two the latter
prevails.
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