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Abstract

In many cases the most accurate information about fields
in a magnet comes either from direct measurement (using
for example spinning coils) or from a numerical computa-
tion done with a 3D electromagnetic code. In this paper we
show how this information can be used to compute transfer
maps with high accuracy. The resulting transfer maps take
into account all effects of real beamline elements includ-
ing fringe-field and multipole error effects. The method we
employ automatically incorporates the smoothing proper-
ties of the Laplace Green function. Consequently, it is ro-
bust against both measurement and electromagnetic code
errors. The method has been implemented in the code
MARYLIE as a pair of user–defined routines.

1 INTRODUCTION

The motion of charged particles through any beam-line ele-
ment is described by the transfer mapM for that element.
Through aberrations of order(n − 1) such a map has the
Lie representation [1, 2]

M = R2 exp(: f3 :) exp(: f4 :) · · · exp(: fn :). (1)

The linear mapR2 and the Lie generatorsf` are determ-
ined by the equation of motionṀ = M : −H : where
H = H2 +H3 +H4 + · · · is the Hamiltonian expressed in
terms of deviation variables and expanded in a homogen-
eous polynomial series. The deviation variable Hamilto-
nianH is determined in turn by the HamiltonianK. In
Cartesian coordinates withz taken as the independent vari-
able, and in the absence of electric fields,K is given by the
relation

K=−[p2
t/c

2−m2c2−(px−qAx)2−(py−qAy)2]1/2−qAz

HereA is the magnetic vector potential. We therefore need
a Taylor expansion for the vector potential componentsAx,
Ay , Az in the deviation variablesx andy. How can the
coefficients of the Taylor expansion for the vector poten-
tial be determined from a knowledge of the magnetic field?
In this paper we review the method we proposed in [3].
The method uses information about the fields coming from
either direct measurement or numerical computation done
with a 3D electromagnetic code. It is based on the cal-
culation of Fourier integrals with suitable kernels derived
from the Green function of the Laplace equation. Our ap-
proach is different from and more accurate than other meth-
ods based on numerical differentiation (e.g. [4]). A pleas-
ant feature is relative insensitivity to the presence of noise
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in the magnetic field data, which makes the method capable
of providing accurate computations of high order terms in
the desired Taylor expansion. An additional advantage is
that it applies, with minor modifications, to both magnet
data obtained by numerical computation and measured data
found with spinning coils (see [3] for more details).

2 DETERMINATION OF THE VECTOR
POTENTIAL

In a current-free region the magnetic fieldB can be de-
scribed most simply in terms of ascalarpotentialψ (with
B = ∇ψ) obeying the Laplace equation∇2ψ = 0. In
cylindrical coordinates the general solution to this equation
(that is regular for smallρ) has the expansion

ψ =
∞∑

m=0

∫ ∞

−∞
dkeikzIm(kρ)[b̂m sinmφ+ âm cosmφ],

(2)
where the functionŝam = âm(k) and b̂m = b̂m(k) are
arbitrary, andIm is the modified Bessel function. This is
a “cylindrical multipole” expansion, wherem is related to
the order of the multipole, and should not be confused with
a spherical multipole expansion. The first term on the RHS
of (2) describes a purely solenoidal field (m = 0). The
other terms in the series correspond to the dipole(m = 1),
quadrupole(m = 2), · · · components. For simplicity we
will treat the terms withm ≥ 2. The solenoidal term
requires a separate, but analogous, treatment that entails
no new complications. The dipole case is more complic-
ated. In the sometimes restrictive case that the sagitta of
the design orbit does not exceed the radiusR introduced in
Sec. 3, the methods of this paper also apply. However other
methods are required if the sagitta is larger. Ifψ is given
in the form (2), a suitable corresponding vector potential is
easily found. Since there is gauge freedom, a possible cov-
enient choice, in the absence of a solenoidal component, is
to work in a gauge satisfyingAφ = 0. Supposeψ as given
by (2) is rewritten in the form

ψ =
∞∑

m=1

ψm,s(ρ, z) sinmφ+ ψm,c(ρ, z) cosmφ (3)

with

ψm,s(ρ, z) =
∫ ∞

−∞
dkeikzIm(kρ)b̂m(k). (4)

[ψm,c has the same form, witĥam(k) replacingb̂m(k).]
Then it is easily verified that the remaining components of
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the vector potential are given by the relations

Aρ =
∞∑

m=1

cos(mφ)
m

ρ
∂

∂z
ψm,s − sin(mφ)

m
ρ
∂

∂z
ψm,c,

Az =
∞∑

m=1

−cos(mφ)
m

ρ
∂

∂ρ
ψm,s +

sin(mφ)
m

ρ
∂

∂ρ
ψm,c.

From the two equations above it is clear that finding
Taylor expansions for the vector potential componentsAx,
Ay , andAz (what we need) is equivalent to finding Taylor
expansions forψm,s andψm,c in the variableρ. This is eas-
ily done by a two-step process: first, we expand the mod-
ified Bessel functionsIm(kρ) appearing in (4) as Taylor
series in the quantity(kρ). Doing so produces an expan-
sion in powers ofρ with coefficients that involve integra-
tions over various powers ofk. Second, we observe that
the powers ofk can be replaced by multiple differentiation
with respect to the variablez. The net results of these two
steps are the relations(α = c, s)

ψm,α(ρ, z) =
∞∑

`=0

(−1)`m!
22``!(`+m)!

C[2`]
m,α(z)ρ2`+m. (5)

The index[2`] indicates the2` derivative with respect to
the longitudinal variablez. The functionsC[0]

m,α(z) are the
generalized on-axis gradients. Note that the generalized
gradients depend on the longitudinal variablez. For fields
produced by long well-made magnets, however, thez de-
pendence will be significant only at the ends. We conclude
that the dynamics of a charged particle passing through
a region of space occupied by a magnetic field described
by the scalar potential (2) is completely determined by a
knowledge of the generalized on-axis gradient functions
C

[0]
m,α(z) and their derivatives.

3 COMPUTATION OF GENERALIZED
GRADIENTS FROM FIELD DATA

Suppose the radial component of the magnetic fieldBρ

is known, either by measurement or computation, on
the surface of some infinitely long cylinder of radiusR.
Moreover, suppose that the field is given in terms of an an-
gular Fourier series,

Bρ =
∞∑

m=1

Bm(R, z) sin(mφ) +Am(R, z) cos(mφ). (6)

It can be shown [3] that the generalized on-axis gradients
appearing in the expansion coefficients for the scalar po-
tential (8) can be written as

C[n]
m,s(z) =

in

2mm!
1√
2π

∫ ∞

−∞
dkeikz k

m+n−1

I ′m(kR)
B̃m(R, k).

(7)
The expression forC[n]

m,c(z) has Ãm(R, k) replacing
B̃m(R, k). HereB̃m(R, k) andÃm(R, k) are the Fourier

transforms ofBm(R, z) andAm(R, z), e.g.,

B̃m(R, k) =
1√
2π

∫ ∞

−∞
dze−ikzBm(R, z). (8)

In the case where the magnetic field is produced by an
iron dominated magnet, and is therefore localized in space,
the integrals (8) can be considered to have, in practice, fi-
nite limits of integration. With some care, an effective cut-
off can also be found even if the fields extend to infinity
since they fall off sufficiently rapidly at infinity. Also, since
the generalized Bessel functionI ′m(w) increases exponen-
tially for large|w|, there is also, in effect, a cut-off ink for
the integral (7) defining the generalized gradients.

4 TESTS AND EXAMPLES

The method described in Section 3 has been implemented
in the code MARYLIE [2] as a pair of user–defined routines.
Versions of the two routines exist for both MARYLIE

3.0, which has recently been released [5] and MARYLIE

5.0, which is still under developement. The first routine,
`usr15' , reads the magnetic field data from an external file
and computes the functionsAm(R, z) andBm(R, z). The
second routine, `usr16' , uses the output of `usr15' to cal-
culate the corresponding tranfer map. In the input file one
has to provide a listing of theBx andBy components of
the magnetic field together with the coordinates(x, y, z) of
the points on the cylindrical surface of radius R on which
the field is defined. For a fixedz, there arenφ equally dis-
tributed points along a circumference of radiusR centered
in z and there arenz such slices. A user–defined routine in
MARYLIE is invoked in the master input file like any other
MARYLIE command, together with the required paramet-
ers. For example, for `usr15' there are two sets of para-
meters one needs to specify. The first set consists of the
file number containing the magnetic field data, the num-
bersnφ andnz, a scaling factor for thez coordinate and
the magnetic field and the radius R. The second parameter
set contains the numbers of files in which to write the nor-
mal and skew harmonics, and the values of the integrated
harmonics respectively. An excerpt of a MARYLIE master
input file containing a setting for `usr15' is shown below:

#menu
hrmncs usr15

1 501 101 0.001 1 0.03
hrmps1 ps1

40 42 12 0 0 0
#lines

harm
1*hrmps1 1*hrmncs

In order to test both the routines and the method we
treated the case of an ideal iron-free Lambertson quadru-
pole. The use of this case as an example has the virtue that
the variousC[n]

m,α(z) can also be determined analytically
(see [3]) given a knowldge of the location of the conduct-
ors. Results are shown in Figs. 1 and 2. In Fig. 1 the dashed
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Figure 1: Plot of the scaled harmonicB2(R, z)/R (dashed
line) and the on-axis gradient2C[0]

2,s(z) as calculated from
surface data (dots) and analytically (solid line) for an ideal
Lambertson quadrupole.

line is the functionB2(R, z)/R as calculated numerically
by using the Biot-Savart law. The solid line represents the
on-axis gradient, which is equal to2C[0]

2,s(z), as calculated
analytically, while the dots represent the same function as
calculated from the surface data. The deviation between
B2(R, z)/R and2C[0]

2,s(z) is due to terms in the multipole

expansion containing derivatives of2C[0]
2,s(z). These terms

are the so called pseudo-multipoles. This can be seen by
writing the multipole expansion forBρ through6th order
in ρ:

Bρ =
(

2C[0]
2,sρ−

1
3
C

[2]
2,sρ

3 +
1
64
C

[4]
2,sρ

5

)
sin 2φ

+ 6C[0]
6,sρ

5 sin 6φ. (9)

In Fig. 2, as an indication of the reliability of the method,
we report the 8th derivative of the generalized gradient
(needed for a 9th order code) calculated from the surface
data (dots) compared to the anlytical profile (solid line).
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Figure 2: FunctionC[8]
2,s(z) (in units of10−5 Gauss/cm9) as

calculated from surface data (dots) and analytically (solid
line) for an ideal Lambertson quadrupole.

Finally as an example of application, Figs. 3 and 4 show
the result of magnetic field analysis for the Return end of a
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Figure 3: HarmonicB2(R, z) (quadrupole field compon-
ent) for the Return End; R=3 cm.
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Figure 4: Generalized gradientC2,s(z) for the Return End,
(z = 25 cm in this picture corresponds toz = 0 of Figs. 3).

High Gradient quadrupole in LHC [6].
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