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Abstract 2 ORBITAL MOTION IN STORAGE

RINGS
In this series of eight papers we present the applications ) . ) o
of methods from wavelet analysis to polynomial approxiYVe consider as the main example the particle motion in
mations for a number of accelerator physics problems. [Fforage rings in standard approach, which is based on con-
this part, according to variational approach we obtain a regidération in [9]. - Starting from Hamiltonian, which de-
resentation for orbital particle motion in storage rings as %C”g’ed gle;s?lgal dynamics in storage rifiger, P,t) =
multiresolution (multiscales) expansion in the base of wellc{™* +m5¢’}/>+e and using Serret-Frenet parametriza-
localized in phase space wavelet basis. By means of tHign, we have after standard manipulations with truncation

"wavelet microscope” technique we can take into accoufif POWer series expansion of square root the following ap-
contribution from each scale of resolution. proximated (up to octupoles) Hamiltonian for orbital mo-

tion in machine coordinates:
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This is the first part of our eight presentations in which +§ KZ+g)-a® + 3" [K2—g]-2° =N -xz
we consider applications of methods from wavelet anal- . y
ysis to nonlinear accelerator physics problems. Thisisa — +¢- (23 — 3x2%) + TR (2% — 62222 + 2%)
continuation of our results from [1]-[8], which is based on
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our approach_t_o investigation of non!mee}r problems gen +— 5 E h 7 +
eral, with additional structures (Hamiltonian, symplectic or 0o 47 0

quasicomplex), chaotic, quasiclassical, quantum, which aﬁ%
considered in the framework of local (nonlinear) Fourier B S PR B
analysis, or wavelet analysis. Wavelet analysis is a reIJ@(?‘(’% o FO) + f'O0pg + f"(O)p5/2 + ... = po —

tively novel set of mathematical methods, which gives us & 70). +... and the cprrespondmg expansion of RHS
of equations corresponding to (1). In the following we take

possibility to work with well-localized bases in functional. " nt onlv an arbitrar lvnomial (in terms of d
spaces and with the general type of operators (differentié'i1 0 account only an arbitrary polynomia ( 1 terms ot dy
amical variables) expressions and neglecting all nonpoly-

integral, pseudodifferential) in such bases. In the parts ik

. L . nomial types of expressions, i.e. we consider such approxi-
8 we consider applications of wavelet technique to non- yp b pp

linear dynamical problems with polynomial type of ncm_matlons of RHS, which are not more than polynomial func-

linearities. In this part we consider this very useful apyons in dynamical variables and arbitrary functions of in-

proximation in the case of orbital motion in storage ringSerendent varlaple( time”in ourcase, ifwe consider our
Approximation up to octupole terms is only a particula|SyStem of equations as dynamical problem).

case of our general construction for n-poles. Our solutions

are parametrized by solutions of a number of reduced al- 3 POLYNOMIAL DYNAMICS

gebraical problems one from which is nonlinear with the

same degree of nonlinearity and the rest are the linear proﬁhe first main part of our consideration is some variational
lems which correspond to particular method of calculatiogPProach to this problem, which reduces initial problem to

of scalar products of functions from wavelet bases and théft€ problem of solution of functional equations at the first
derivatives. stage and some algebraical problems at the second stage.

We have the solution in a compactly supported wavelet ba-
sis. Multiresolution expansion is the second main part of
* e-mail: zeitin@math.ipme.ru our construction. The solution is parameterized by solu-
T http:/Avww.ipme.ru/zeitlin.html; http:/mww.ipme.nw.ru/zeitlin.html - tions of two reduced algebraical problems, one is nonlinear

en we use series expansion of functjt(m, ) from [9]:
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and the second is some linear problem, which is obtaineghere coefficients\* are roots of the corresponding re-

from the method of Connection Coefficients (CC). duced algebraical problem (6). Consequently, we have a
parametrization of solution of initial problem by solution
3.1 Variational Method of reduced algebraical problem (6). The first main problem

o bl be f lated as th " f s a problem of computations of coefficients of reduced al-
ur %r?f emt§ rlnay ff ormulated as the systems o ordg'jebraical system. As we will see, these problems may be
hary difierential équations explicitly solved in wavelet approach. The obtained so-
. lutions are given in the form (8), whet¥(t) are basis
dz;/dt = fi(x;,t i,j=1,...,n 2 . . ' i !

i/ filws,t), (0. ) @ functions and\; are roots of reduced system of equations.
with fixed initial conditionsz;(0), wheref; are not more N our caseX(t) are obtained via multiresolution expan-
than polynomial functions of dynamical variablesand ~ Sions and represented by compactly supported wavelets and
have arbitrary dependence of time. Because of time dilay; are the roots of corresponding general polynomial sys-
tion we can consider only next time interval:< ¢ < 1. tem (6) with coefficients, which are given by CC construc-
Let us consider a set of functiods (t) = z;dy; /dt + f;y;  tion. According to the variational method to give the reduc-

and a set of functionals tion from differential to algebraical system of equations we
need compute the objects andy;;, which are constructed
! from objects:
Fi(z) Z/ @, (t)dt — ziy; o, 3) Jects:
0 1 1
P = X,’ d 5 i = X,’ X, d 5
wherey; (t)(y:(0) = 0) are dual variables. It is obvious /0 (r)dr, - vy /0 (M)X;(r)dr

that the initial system and the system

i / X!(7)X, (r)dr, ©)

Fi(x) =0 (4)

1
;o= Xip(n) Xy (7)) X, (7)dr
are equivalent. In the following parts we consider an ap- Pty /0 W)X (T)X;(7)
proach, which is based on taking into account underlyingy the simplest case of Riccati systems (sextupole approx-
symplectic structure and on more useful and flexible an@mation), where degree of nonlinearity equals to two. For
Iyt|CaI approach, related to bilinear structure of initial funC‘the genera| case of arbitrary n we have ana'ogous to (9) it-
tional. Now we consider formal expansions fqr y;: erated integrals with the degree of monomials in integrand

which is one more bigger than degree of initial system.
zi(t) = 2:(0) + Y Nen(t) yi(t) =D njer(t). (5)
k " 3.2 Wavelet Computations

where because of initial conditions we need opl{0) =  Now we give construction for computations of objects (9)
0. Then we have the following reduced algebraical systefy the wavelet case. We present some details of wavelet
of equations on the set of unknown coefficienfsof ex-  machinery in part 2. We use compactly supported wavelet
pansions (5): basis (Fig. 1, for example): orthonormal basis for functions

i 2
D ke X =7 (M) =0 ) in L2(R).
k

Its coefficients are \m
1 I
o = / (D)o (E)dt, @) WAF

1 qﬂr,

e / fi(@j, t)er(t)dt. H\/\
0

Now, when we solve system (6) and determine unknowr Sy A

coefficients from formal expansion (5) we therefore obtain
the solution of our initial problem. It should be noted if we
consider only truncated expansion (5) with N terms then we
have from (6) the system @f xn algebraical equations and
the degree of this algebraical system coincides with degree
of initial differential system. So, we have the solution of
the initial nonlinear (polynomial) problem in the form

Figure 1: Wavelets at different scales and locations

Letbef : R — C and the wavelet expansion is

N 00
zi(t) = 2;(0) + Z AEXL(1), (8) f(x) = Z cepe() + Z Z cikYjk () (10)
k=1

leZ j=0 keZ
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If in formulae (10)c;, = 0 for j > J, thenf(x) has an and after that we obtain the coefficients of wavelet expan-
alternative expansion in terms of dilated scaling functionsion (8). As a result we obtained the explicit time solution
only f(x) = >_,cz coepse(x). Thisis afinite wavelet ex- of our problemin the base of compactly supported wavelets
pansion, it can be written solely in terms of translated scalvith the best possible localization in the phase space, which
ing functions. Also we have the shortest possible suppomilows us to control contribution from each scale of under-
scaling functionDN (whereN is even integer) will have lying multiresolution expansions.
support[0, N — 1] and N/2 vanishing moments. There In the following parts we consider extension of this ap-
exists\ > 0 such thatDN hasAN continuous deriva- proach to the case of (periodic) boundary conditions, the
tives; for smallN, A > 0.55. To solve our second asso-case of presence of arbitrary variable coefficients and more
ciated linear problem we need to evaluate derivatives dliexible biorthogonal wavelet approach.

f(z) in terms ofp(z). Let beyy = d"ye(z)/dz™. We We are very grateful to M. Cornacchia (SLAC), W. Her-
consider computation of the wavelet - Galerkin integralsmannsfeldt (SLAC), Mrs. J. Kono (LBL) and M. Laraneta
Let f¢(x) be d-derivative of functiorf(x), then we have (UCLA) for their permanent encouragement.

fiz) = 3, apd(z), and valuesy{(z) can be expanded
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tain unique solution by combination of LU decomposition
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obtain the coefficients of nonlinear algebraical system (6)
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