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NONLINEAR ACCELERATOR PROBLEMS VIA WAVELETS:
6. REPRESENTATIONS AND QUASICLASSICS VIA FWT

A. Fedorova, M. ZeitlinIPME, RAS, St. Petersburg, Russia

Abstract plectic vector space with symplectic form (, ), thBmp V

. : : ... _iscnilpotent Lie algebra - Heisenberg algebi®, V] =
In this series of eight papers we present the appllcatlonsI f a _ S
methods from wavelet analysis to polynomial approximaé [v,w] = (v,w) € R, [V,V] = R. Sp(V) is a group

: . f automorphisms of Heisenberg algebra. Let N be a group
tions for a number of accelerator physics problems. In th(%vith Lie algebraR & V', i.e. Heisenberg group. By Stone—

art we consider application of FWT to metaplectic repre- . - g
P P b b n Neumann theorem Heisenberg group has unique irre-

zie(::r;t.atlon(quantum and chaotical problems) and quasmlad%cible unitary representation in whi¢h— 4. Let us also
consider the projective representation of symplectic group
Sp(V): Uy, Uy, = ¢(g1,92) - Uy, g,, Where ¢ is a map:
1 INTRODUCTION Sp(V) x Sp(V) — St i.e. cisSt-cocycle. But this rep-
This is the sixth part of our eight presentations in whicesentation is unitary representation of universal covering,
we consider applications of methods from wavelet anal-€- metaplectic group/p(V). We give this representa-
ysis to nonlinear accelerator physics problems. This is PN without Stone-von Neumann theorem. Consider a new
continuation of our results from [1]-[8], in which we con-9roupF’ = N’ e Mp(V), = is semidirect product (we
sidered the applications of a number of analytical method@nsider instead aV = R@ V theN' = S' x V,  S' =
from nonlinear (local) Fourier analysis, or wavelet analy{ft/27Z)). LetV* be dual to V,G(V*) be automorphism
sis, to nonlinear accelerator physics problems both gene@{Pup ofV*.Then F is subgroup a&(V*), which consists
and with additional structures (Hamiltonian, symplectic oPf elements, which acts on* by affine transformations.
quasicomplex), chaotic, quasiclassical, quantum. Wavel&his is the key point! Let, ..., gn; p1, ..., p, be symplec-
analysis is a relatively novel set of mathematical method8¢ basis in Va = pdq = 3 pidq; andda be symplectic
which gives us a possibility to work with well-localized form onV*. Let M be fixed affine polarization, then for
bases in functional spaces and with the general type 6f€ £ the mapa — O, gives unitary representation of G:
operators (differential, integral, pseudodifferential) in sucPa : (M) — H(M). Explicitly we have for representa-
bases. In contrast with parts 14 in parts 5-8 we try thon of N.on H(M): (6, f)"(z) = ™" f(z), ©,f(z) =
take into account before using power analytical approachééz — p) The representation of N on H(M) is irreducible.
underlying algebraical, geometrical, topological structureset Aq, 4, be infinitesimal operators of this representation
related to kinematical, dynamical and hidden symmetry of 1 1
physical problems. In part 2 according to the orbit method ¢ = lim ¥[®_t‘1 — 1l Ay = Jim ?[9_”’ -1,
and by using construction from the geometric quantization of
theory we construct the symplectic and Poisson structuresthenA, f(z) = i(qx) f(z), Apf(z) = ZP;‘%(CU)
associated with generalized wavelets by using metaplectic , , L
structure. In part 3 we consider applications of very usef{OW We give the representation of infinitesimal basic ele-
fast wavelet transform technique (FWT) (part 4) to calcyments. Lie algebra of the group F is the algebra of all (non-

lations in quasiclassical evolution dynamics. This methofemogeneous) quadratic polynomials of (p,q) relatively

gives maximally sparse representation of (differential) opl_30isson bracket (PB). The basis of this algebra consists of

erator that allows us to take into account contribution frorff €MENSL: 41, s ny P1s o Py Giy: 4iPgs PiDjs 4] =

each level of resolution. ey 1S,
. of dg Of Og
PB =S99 979
2 METAPLECTIC GROUP AND is Af9} Zapj dq; g Opi
REPRESENTATIONS and {1,g}=0 forallyg,

Let Sp(n) be symplectic group}/p(n) be its unique two- {pisa;} = 6ij,  {pigj, ax} = dir gy,

fold covering — metaplectic group [9]. Let V be a sym- {pigj.pr} = —0kpi,  {pipj i} =0,
*e_ma”: Zeitlin@math.ipme.ru {p7pj7 Qk} = 6ik7pj + 6jk7pi7 {qlqj7 qk} = 07
1 http://www.ipme.ru/zeitlin.html: http://www.ipme.nw.ru/zeitlin.html {qiqj.pr} = —0ira; — djnai
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so, we have the representation of basic eleménrts Ay :  wherea = (o, . .., a,) isamulti-index|a| = a1 +.. .+
11, qp — txg, oy, D, = —ihd,. So, evolution (1) for symbdl,(z, &; i)
is
e 2 g ot
L 7 Pidj 7 T 50, : 1
ozl i oxi 27" by = {H, b} + 5 Z (—=1)Al. )
1 0 kgl jal+81=521

PkleTW,qkquix T ‘
P OrToT 1 (0¢HDIb;) - (9 b1 DEH).

This gives the structure of the Poisson manifolds to rep- _ _ _ o

resentation of any (nilpotent) algebra or in other words to At 72 = 0 this equation transforms to classical Liouville

continuous wavelet transform. According to this approacfduation .

we can construct by using methods of geometric quantiza- be = {H, b:}. (3

tion theory many "Symplectic wavelet constructions” Witthuation (2) p|ays a key role in many quantum (Semic|as-

corresponding symplectic or Poisson structure on it. Thefical) problem. We note only the problem of relation be-

we may produce symplectic invariant wavelet calculationgveen quantum and classical evolutions or how long the

for PB or commutators which we may use in quantizatiogyolution of the quantum observables is determined by the

procedure or in chaotic dynamics (part 8) via operator regorresponding classical one [9]. Our approach to solution

resentation from section 4. of systems (2), (3) is based on our technique from [1]-[8]
and very useful linear parametrization for differential oper-
3 QUASICLASSICAL EVOLUTION ators which we present in the next section.

Let us consider classical and quantum dynamics in phase
space) = R*™ with coordinategz, £) and generated by 4 FAST WAVELET TRANSFORM FOR

Hamiltonian™ (z, £) € C*(; R). If &}t : @ — Qs DIFFERENTIAL OPERATORS

(classical) flow then time evolution of any bounded CIaSLet us consider multiresolution representationc Va C
sical observable or symbé(z,£) € C*°(Q2, R) is given Vi C Vo C V.4 C V... (see our other papers from
by bi(z,6) = b(@f(x,€)). Let H = Op"(H) and g series for details of wavelet machinery). Let T be an
B = Op"(b) are the self-adjoint operators or q“a”tu”bperatorT . L*(R) — L%(R), with the kemelK (z, y)
observables il.?(R"), representing the Weyl quantization ;,q P : IXR) - V; (j c Z) is projection op;era—
of the symbolsH, b [9] tors on the subspack; corresponding to j level of res-
) sty olution: (Pf)(z) = . < fooix > ¢jr(z). Let
(Bu)(z) = W/ b <T,€> : Q; = P;_, — P; is the projection operator on the sub-
‘ mh)" e spacél/; then we have the following "microscopic or tele-
e/ <m0y (y) dyde, scopic” representation of operator T which takes into ac-
, . count contributions from each level of resolution from dif-
vagrsnlgefg géfg rz/ :;)r;g cﬁtq;ni;ﬁ/s\f) Ieut:Z;/Zf ?hi g‘;ser&erent scales starting with coarsest and ending to finest
cales [10]T =" . TQ; TP;+P,TQ;). We
able B. under unitary group gepe.:rated. By. B solves remem[ber]that t%sf ieszas?ésu%(;p?ejsenijerof]aff%e) groupin-
the Helseqberg equation of motids) = (i/%)[H, By|. LE.:t side this construction. The non-standard form of operator
bt(x’f.; h) is a symbol ofB; then we have the following representation [10] is a representation of an operator T as
equation for it . achain of triples” = {A;, B;,T'; };ez, acting on the sub-
be = {H,be}ar, (1) spaces; andW;: A; : W; — W;, B, : V; — W;,T; -
with the initial conditionby(z,&,h) = b(z,&). Here W; — V;, where operator§A;, B;,I';};cz are defined
{f, gy (z, &) is the Moyal brackets of the observablesasA; = Q;TQ;, B; = Q;TP;, T; = P;TQ;. The
f,g € C®(R*™), {f, gtm(x,&) = fig — gt f, whereftg  operatorl’ admits a recursive definition via
is the symbol of the operator product and is presented by
the composition of the symbo)s ¢ T; = ( Ajr1 Bjn ) ,
Ujtr Tin
1

Slat+w,p+&)-glx+r7+ E)dpdrdrdw.

/4 e isnpz/hricer=/h whereT; = P;TP; andT; works onV; : V; — V;.
Rn

It should be noted that operater; describes interaction
on the scalej independently from other scales, opera-
tors B;, I'; describe interaction between the scale j and all
coarser scales, the operaigris an "averaged” version of
T;_1. The operatorsl;, B;,I';, T; are represented by ma-
{fghu(@.&) ~ {f.9) +277 tricesad, 57,7, &/

DB (2 fDBa) - (85 aDY .
2. (UM @fDz0) - (0aDED), oo = [ [ Kbty

For our problemsiitis useful thdff, g}, admits the formal
expansion in powers df:

latB]=j2>1
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- K(z, (@) (y)dzd 4 ¢ < L-2r = —r_ Forthe representation of op-
kol // (@ uhbsn(@) s (y)dady - (4) eratord™/dx™ we have the similar reduced linear system
j _ . 4 of equations. Then finally we have for action of operator
Tkt //K(x’y)%”“(xWJ”“’ (y)dzdy T;(T; : V; — V;) on sufficiently smooth functiorf:
st = [ [ Ko@)ty |
ok ! ! (Tif) @) = (279> refin—i | vin(@),
keZ V4

We may compute the non-standard representations of oper-
atord/dz in the wavelet bases by solving a small systemwherey; i (z) = 277/2¢(2 7z — k) is wavelet basis and
of linear algebraical equations. So, we have for objects (4)

Fip—1 =279/ / f@)e2 9z —k+0)dz

are wavelet coefficients. So, we have simple linear para-

af, = 27j/1/1(27jx—i)1//(2’j—€)27jdx

= 2770, metrization of matrix representation of our differential op-
; _; _; N _; erator in wavelet basis and of the action of this operator on
e = 2 /w(z z—i)g' (27 - £)27dzx arbitrary vector in our functional space. Then we may use

_ 9ig, such representation in all preceding sections.
it We are very grateful to M. Cornacchia (SLAC), W. Her-
%?[ = Q*j/gp(2*jx —in (277 — £)27dx rmannsfeldt (SLAC) Mrs. J. Kono (LBL) and M. Laraneta
‘ (UCLA) for their permanent encouragement.
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