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Abstract

This paper considers an intense nonneutral ion beam
propagating in thez-direction through a periodic fo-
cusing quadrupole field with transverse focusing force,
Ffoc = −κq(s)(xêx − yêy), on the beam ions.
A third-order Hamiltonian averaging technique using a
canonical transformation is employed to transform away
the rapidly oscillating terms. This leads to a Hamil-
tonian, H(X̃, Ỹ , X̃ ′, Ỹ ′, s) = (1/2)(X̃ ′2 + Ỹ ′2) +
(1/2)κfq(X̃2+ Ỹ 2)+ψ(X̃, Ỹ , s), in the transformed vari-
ables(X̃, Ỹ , X̃ ′, Ỹ ′), where the focusing coefficientκfq is
constant, and many solutions and properties of the Vlasov-
Maxwell system are well known.

1 INTRODUCTION

It is important to be able to investigate, based on the
nonlinear Vlasov-Maxwell equations, the equilibrium and
stability properties of general distribution functions for
periodically-focused beams[1, 2, 3]. Despite its lim-
ited practical interest due to the unphysical distribution
in phase space, the Kapchinskij-Vladimirskij (KV) beam
equilibrium[1, 4, 5, 6], including its recent generalization
to a rotating beam in a periodic focusing solenoidal field[7,
8], has been theonly known periodically-focused equilib-
rium solution to the nonlinear Vlasov-Maxwell equations
describing an intense beam propagating through a peri-
odic focusing field. The difficulty of solving the non-
linear Vlasov-Maxwell system in general lies in the fact
that the Hamiltonian for the motion of an individual beam
particle is time dependent. Channell[9] and Davidson
et al[10] have recently developed a third-order Hamilto-
nian averaging technique using a canonical transforma-
tion to average over the fast time scale associated with
the betatron oscillations. This procedure is expected to
be valid for sufficiently small phase advance (σ . 60◦,
say). In the present analysis, we apply this technique to
the Vlasov-Maxwell system for intense beams propagat-
ing through a periodic focusing lattice. Under the thin-
beam assumption, the applied transverse focusing force
on a beam particle isFfoc = −κq(s)(xêx − yêy). The
Vlasov-Maxwell equations for the distribution function

fb(x, y, x′, y′, s) and the normalized self-field potential
ψ(x, y, s) = Zbeφ(x, y, s)/γ3

bmbβ
2
b c

2 can be expressed
as[1, 7]{ ∂

∂s
+ x′

∂

∂x
+ y′

∂

∂y
−

(
κq(s)x+

∂ψ

∂x

) ∂

∂x′

−
(
− κq(s)y +

∂ψ
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) ∂

∂y′
}
fb = 0 ,

(1)

and ( ∂2

∂x2
+

∂2

∂y2

)
ψ = −2πKb

Nb

∫
dx′dy′fb . (2)

Here,

Kb =
2NbZ

2
b e

2

γ3
bmbβ2

b c
2

andNb =
∫
dxdydx′dy′fb (3)

are the self-field perveance and the number of beam ions
per unit axial length, respectively.

2 CANONICAL TRANSFORMATION

Because of the oscillatory time dependence ofκq(s), there
is no general analytical method to solve the nonlinear
Vlasov-Maxwell equations. However, we can average over
the fast time scale associated with the betatron oscillations
when the phase advance is sufficiently small. The av-
eraging process is accomplished by introducing a canon-
ical coordinate transformation from the laboratory coor-
dinate system(x, y, x′, y′) to a new coordinate system
(X,Y,X ′, Y ′). In the laboratory coordinates, the single-
particle HamiltonianH(x, y, x′, y′, s) is

H = ε

[
1
2
(x′2 + y′2) +

1
2
κq(s)(x2 − y2) + ψ(x, y, s)

]
,

(4)

whereε is a small dimensionless parameter proportional to
the focusing field strength. We use a near-identity canon-
ical transformationT : (x, y, x′, y′) 7−→ (X,Y,X ′, Y ′)
that is generated by a generating function of the Von Zeipel
form, i.e.,

S(x, y,X ′, Y ′, s) = xX ′ + yY ′

+
∞∑

n=1

εnSn(x, y,X ′, Y ′, s) .
(5)
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Consequently, the transformed Hamiltonian in the new
variablesH(X̃, Ỹ , X̃ ′, Ỹ ′, s) is given by

H =
∞∑

n=1

εnHn = H +
∂

∂s
S(x, y,X ′, Y ′, s) . (6)

The corresponding coordinate transformation is given by

X =
∂S

∂X ′ = x+
∞∑

n=1

εn
∂

∂X ′Sn(x, y,X ′, Y ′, s) ,

x′ =
∂S

∂x
= X ′ +

∞∑
n=1

εn
∂

∂x
Sn(x, y,X ′, Y ′, s).

(7)

The equations forY andy′ are similar in form.. We choose,
order by order, the generating functionSn in such a way
that Hn is independent of the fast time scale associated
with oscillations inκq(s), and solve for the coordinate
transformation iteratively whenSn is known. Following
the detailed algebra presented in Ref. [10], we obtain the
transformed Hamiltonian correct to orderε3,

H =
1
2
(X̃ ′2 + Ỹ ′2) +

1
2
κfq(X̃2 + Ỹ 2) + ψ(X̃, Ỹ , s) ,

(8)

where we have setε = 1. Here,κfq is defined in Eq.
(11), and we have introduced the additional (canonical)
fiber transformation to shifted velocity coordinates defined
by

X̃ = X , X̃ ′ = X ′ − 〈αq〉X ,

Ỹ = Y , Ỹ ′ = Y ′ + 〈αq〉Y .
(9)

Similarly, correct to orderε3, we calculate the inverse co-
ordinate transformation,x = X + εx1 + ε2x2 + ε3x3,
x′ = X ′ + εx′1 + ε2x′2 + ε3x′3, etc. Settingε = 1, this
gives[10]

x(X̃, Ỹ , X̃ ′, Ỹ ′, s) = [1 − βq(s)]X̃ + 2
(∫ s

0

dsβq(s)
)
X̃ ′ ,

x′(X̃, Ỹ , X̃ ′, Ỹ ′, s) = [1 + βq(s)]X̃ ′ +
{
−αq(s) + 〈αq〉

+ 〈αq〉βq(s) − αq(s)βq(s) −
(∫ s

0

ds[δq(s) − 〈δq〉]
)}
X̃

+
(∫ s

0

dsβq(s)
) ∂

∂X̃

(
X̃
∂ψ(X̃, Ỹ )

∂X̃
− Ỹ

∂ψ(X̃, Ỹ )
∂Ỹ

)
.

(10)

The coordinate transformation can be easily obtained by
solving Eq. (10) forX̃ andX̃ ′ in terms ofx andx′. The
expressions fory andy′ are identical in form to Eq. (10)
provided we make the replacements(x, x′) → (y, y′) and
(X̃, Ỹ , X̃ ′, Ỹ ′) → (Ỹ , X̃, Ỹ ′, X̃ ′) and reverse the signs of
αq(s) andβq(s). In the above equations,αq(s), βq(s),
andδq(s) are defined in terms of the lattice functionκq(s),
which is assumed to have zero average,

∫ S

0
dsκq(s) =

0, and odd half-period symmetry withκq(s − S/2) =
−κq[−(s− S/2)]. The definitions are given by

αq(s) =
∫ s

0

dsκq(s) , βq(s) =
1
S

∫ s

0

ds[αq(s) − 〈αq〉] ,

〈...〉 ≡ 1
S

∫ S

0

ds(...) , δq(s) = α2
q(s) − 2κq(s)βq(s) ,

κfq = 〈δq〉 − 〈αq〉2 =
3
S

∫ S

0

ds[α2
q(s) − 〈αq〉2] .

(11)

In addition, αq(s) and 〈αq〉 are of orderε; βq(s) is of
orderε2; and〈αq〉βq(s), αq(s)βq(s) ,

(∫ s

0 dsβq(s)
)
, and(∫ s

0 ds[δq(s) − 〈δq〉]
)

are of orderε3.

3 VLASOV-MAXWELL EQUATIONS IN
THE TRANSFORMED VARIABLES

Because the transformation leading to the new Hamilto-
nian in Eq. (8) is canonical, the nonlinear Vlasov-Maxwell
equations for the distribution functionFb(X̃, Ỹ , X̃ ′, Ỹ ′, s)
and self-field potentialψ(X̃, Ỹ , s) in the transformed vari-
ables are given by

{ ∂

∂s
+ X̃ ′ ∂

∂X̃
+ Ỹ ′ ∂

∂Ỹ
−

(
κfqX̃ +

∂ψ

∂X̃

) ∂

∂X̃ ′

−
(
κfqỸ +

∂ψ

∂Ỹ

) ∂

∂Ỹ ′

}
Fb = 0 ,

(12)

and(
∂2

∂X̃2
+

∂2

∂Ỹ 2

)
ψ = −2πKb

Nb

∫
dX̃ ′dỸ ′Fb , (13)

whereκfq = const. is defined in Eq. (11). Variables in
laboratory-frame coordinates can be obtained through the
pull-backtransformatioñT ∗ associated with the coordinate
transformation

T̃ : (x, y, x′, y′) 7−→ (X̃, Ỹ , X̃ ′, Ỹ ′) . (14)

Here, T̃ ∗ pulls (transforms) functions on(X̃, Ỹ , X̃ ′, Ỹ ′)
back into functions on(x, y, x′, y′). For example, the dis-
tribution function transforms according to

T̃ ∗ : Fb(X̃, Ỹ , X̃ ′, Ỹ ′, s) 7−→ fb(x, y, x′, y′, s)

≡ Fb(T̃ (x, y, x′, y′), s) .
(15)

In addition, we obtain the following pull-back equation for
the beam density correct to orderε3,

nb(x, y, s) =
∫
dx̄dȳdx′dy′ fbδ(x̄− x)δ(ȳ − y)

=
∫
dX̃dỸ dX̃ ′dỸ ′Fbδ(T̃−1X̃ − x)δ(T̃−1Ỹ − y)

=
{∫

dX̃ ′dỸ ′ [1 − (x2 + x3)
∂

∂X̃

− (y2 + y3)
∂

∂Ỹ
]F

}
(X̃,Ỹ )→(x,y)

.

(16)
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Here, x2, y2 and x3, y3, defined by Eq. (10), are the
second-order and third-order inverse coordinate transfor-
mations expressed as functions of(X̃, Ỹ , X̃ ′, Ỹ ′).

Because of the simple form of the Vlasov-Maxwell
equations in the transformed variables, with constant fo-
cusing coefficientκfq = const., a wide range of literature
developed for the constant focusing case[1, 11, 12, 13] can
be applied virtually intact in the transformed variables. For
example, it is readily shown that any distribution function
of the form

F 0
b (X̃, Ỹ , X̃ ′, Ỹ ′) = F 0

b (H0) , (17)

whereH0 = (1/2)(X̃ ′2 + Ỹ ′2) + (1/2)κfq(X̃2 + Ỹ 2) +
ψ0(X̃, Ỹ ) is the single-particle Hamiltonian, is an ex-
act equilibrium solution to the Vlasov-Maxwell equations
(12) and (13) with∂/∂s = 0. There is clearly enor-
mous latitude[1, 7] in specifying the functional form of
F 0

b (H0) in the transformed variables, with equilibrium
examples[10] ranging from the KV distribution, to the
waterbag equilibrium, to thermal equilibrium, to mention
a few examples. Once the functional form ofF 0

b (H0)
is specified, andψ0 is calculated self-consistently from
Eq. (13), periodically-focused equilibrium properties in the
laboratory coordinates, such as the density profile and the
transverse temperature profile, can then be determined by
the pull-back transformation. For example, to the leading
order, the density profile is of the form[10]

nb(x, y, s) = n0
b

( x

1 − βq(s)
,

y

1 + βq(s)

)
, (18)

wheren0
b(X̃, Ỹ ) =

∫
dX̃ ′dỸ ′ F 0

b (X̃, Ỹ , X̃ ′, Ỹ ′).

4 CONCLUSIONS

To summarize, the formalism developed here represents
a powerful framework for investigating the kinetic equi-
librium and stability properties of an intense nonneu-
tral ion beam propagating through an alternating-gradient
quadrupole field. First, the analysis applies to a broad class
of equilibrium distributionsF 0

b (H0) in the transformed
variables. Second, the determination of (periodically-
focused) beam properties in the laboratory frame is rela-
tively straightforward. Third, the analysis applies to beams
with arbitrary space-charge intensity, consistent only with
requirement for radial confinement of the beam particles
by the applied focusing field(κfqβ

2
b c

2 > ω̂2
pb/2γ

2
b ). Fi-

nally, the formalism can be extended[10] in a straightfor-
ward manner to the case of a periodic-focusing solenoidal
fieldBsol(x) = Bz(s)êz−(1/2)B′

z(s)(xêx+yêy), and to
the case where weak nonlinear corrections to the focusing
force are retained in the analysis.
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