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Abstract

Tracking simulations, with the aim of studying the
microwave regime with short and intense bunches,
suggest different instability mechanisms, according to the
impedance model. In order to get a better insight of the
source of the instability, i.e. azimuthal or radial mode
coupling, we chose to follow the Vlasov-Sacherer
approach to investigate the stability of the stationnary
solution. The generalized Sacherer’s integral, including
mode coupling and potential well distortion, was then
solved by using the “step function technique” for the
expansion of the radial function, as proposed by Oide and
Yokoya. For illustration, the effect of the resonant
frequency of a broadband resonator in the SOLEIL storage
ring was studied. When the resonator frequency is much
higher than the bunch spectrum width, azimuthal mode
coupling can occur before radial mode coupling. When the
resonator frequency is lower, radial mode coupling comes
usually first, but two or more bunchlets are produced at
relatively low current. The diffusion process between the
bunchlets, which leads to the well-known “saw-tooth”
behaviour, originates actually from a fast growing
microwave instability. Lastly, the beneficial effect of an
harmonic cavity on the microwave instability is estimated
and discussed.

1  INTRODUCTION
The Vlasov-Sacherer approach is chosen to investigate the
onset of the microwave instability, leading to abnormal
bunch-lengthening and energy spread widening in electron
storage rings. As soon as the potential well distorsion,
due to wakefields induced in the vacuum chamber, is
significant, single-particle trajectories are no longer
ellipses and the spread in synchrotron frequency must be
taken into account in the stability study of the stationnary
distribution, given by the Haissinski's equation [1]. The
Sacherer’s integral equation with mode coupling [2] is
then generalized to [3]
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As the synchrotron motion is strongly nonlinear, the
action-angle variables (J,φ) have been used. ψ0 and ω are
the amplitude-dependent distribution and synchrotron
frequency of the equilibrium state. The perturbation
distribution oscillates with the coherent frequency Ω  and
has been expanded into the usual radial functions Rm. The
Kernel is an integral over the frequency, involving the
impedance :
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where Km is an integral over the phase variable. The
integral equation (1) was solved by expanding the radial
function Rm.
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according to the “mesh technique“, as suggested by Oide
and Yokoya [4]. This method uses step functions for
h Jn ( )  which takes the constant value 1 ∆Jn  in the strip
around the n-th mesh with the thickness ∆Jn , and zero
elsewhere, and converts (1) into an eigenvalue’s problem..

For illustration, the parameters of the SOLEIL storage
ring [5] are used throughout the paper, as well as a
broadband resonator as impedance model of the vacuum
chamber. The shunt impedance was fixed to 3.6 kΩ , but
since the feature of the impedance, as seen by the beam,
changes with the resonant frequency, we resolved to vary
the resonator frequency on a wide frequency range, from 10
to 30 GHz, in order to study the effect on the phase space
topology and, above threshold, on the origin of the
microwave instability.

2  HIGH RESONANT FREQUENCY
The potential well distortion is first calculated by solving
the Haissinski's equation for a 30 GHz resonator (Fig.1).

Figure 1: Charge distributions (top) - bunch head on the
right side - and synchrotron frequency (bottom) for
different beam currents (30 GHz resonator).

As usual, the distribution becomes asymmetric due to
the resistive part of the impedance and the bunch shifts
forward (positive momentum compaction) to compensate
for the energy loss. The actual synchrotron frequency
starts below the zero-current frequency due to the inductive
part of the impedance. However, above 3 mA, instead of
raising monotically towards unity as the amplitude
increases, it reaches a minimum due to the resistive
component.

The next task consists in studying the stability of the
stationary distribution. Looking first for eventual radial
mode coupling by calculating the eigenvalues for each
azimuthal mode m, separately, we find that the modes
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m=3 to 5 are unstable above 5 mA. Fig. 2 shows for
example the power spectra of the sextupole mode,
calculated by means of the eigenvectors just before and
after the instability threshold. The overlap of the
resistance with the power density is higher at positive
frequencies than at negative frequencies above 5.5 mA,
confirming the emergence of a radial mode coupling. If
now we pursue the analysis by solving the system with
pairs of azimuthal modes, we find a strong coupling
between the modes m=1 and m=2 at relatively low
intensity

.
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Figure 2: Power spectra the m=3 mode just before and
after the instability threshold of 5.5 mA.

Lastly, the coherent frequency is plotted in Fig.3, when
more azimuthal modes than enough are taken into account
(m=1 to 6). A complete mixing occurs at relatively low
current, after a rapid spread. The growth rate increases
dramatically with a current around 5 mA, which
represents the onset of the instability. For higher
intensity, the growth rate is larger than the radiation
damping rate of the SOLEIL ring. Several types of
instability - identified by solid circles - develop
simultaneously, the nature of the most unstable modes
changing with intensity : at the threshold of 5 mA, the
microwave instability is induced by a radial coupling of
the sextupole mode and a coupling of the dipole and
quadrupole modes; these instabilities are finally overtaken
by the radial m=5 mode coupling above 8 mA; an
octupole mode can be also identified, but with a smaller
growth rate.

Figure 3:  Re(Ω) and Im(Ω) vs. current (m=1 to 6).

3  LOW RESONANT FREQUENCY
Similarly, potential well distortion is first calculated for a
lower resonant frequency 11 GHz resonator (Fig.4). The
bunch becomes much more distorted than before and two
peaks appear above 3.5 mA, as soon as there are two or
more stable fixed points, forming distinct islands in the
phase space (Fig.5). We note that the synchroton
frequency is vanishing on the separatrix, whereas it is

about equal to the zero-current frequency at the center of
the first island and twice the zero-current frequency at the
center of the second island.

Figure 4:  Charge distributions (top) - bunch head on the
right side - and synchrotron frequency (bottom) for
different beam currents (11 GHz resonator).

Figure 5: Norm. net voltage (left - solid line) and
constant-H  contours in phase space (right) at 5 mA.

The next task consists in studying the stability of the
stationary distribution. The imaginary and real parts of Ω ,
calculated for with a sufficient number of modes, are
plotted as a function of bunch current in Fig.6. The
growth rate looks more chaotic than for the higher
frequency resonator, because of the rapid change of the
topology of the phase space, perturbated by the formation
of two or more bunchlets. Above 4 mA, which can be
considered as a threshold, two mode families with regular
growth rate increase (identified by solid circles on the
figure), stand out nevertheless. It is worth noting the
sudden change of behaviour at a current of 6 mA.

Figure 6:  Re(Ω) and Im(Ω) vs. current (m=1 to 6).

Again, tracking simulations confirmed a threshold of 4
mA, although some premonitory fluctuation of energy
spread can be observed slightly before, as predicted.
However, the so-called sawtooth instabilty, already
observed in existing machines appears suddenly at 6 mA.
Tracking results show a quick increase of both energy
spread and bunch length, followed by a slower decrease,
with a recurrence of about 150 Hz (Fig. 7).

0

0,5

1

1,5

2

2,5

3

3,5

4

0 2 4 6 8 10

R
e(

Ω
)

I(mA)
-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 2 4 6 8 10

Im
(Ω

)

I(mA)

0

0,1

0,2

0,3

0,4

-4 -2 0 2 4

0 mA
2 mA
4 mA
6 mA
8 mA
10 mA

C
ha

rg
e 

de
ns

ity

τ / στ
0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 1 2 3 4

tail island
head island
outside islands

ω
s 

/ ω
s 0

2J

-5

0

5

-5 0 5

τ / σ
τ -3

0

3

-4 0 4

ε 
/ σ

ε

τ / σ
τ

0

1

2

3

4

0 1 2 3 4 5 6 7

R
e

(Ω
)

I(mA) -0,15

-0,1

-0,05

0

0,05

0,1

0,15

0 1 2 3 4 5 6 7

Im
(Ω

)

I(mA)

1663

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999



Figure 7: Energy spread widening as a function of the
number of turns.

A density-plot of the most unstable distribution,
calculated from the eigenvectors, is given in Fig.8 at the
limit of emergence of the sawtooth behaviour (6 mA).
The azimuthal pattern reveals a pure dipole mode inside
the trailing bunchlet. It is worthwhile noting that this
unstable dipole mode widens so far as to reach the
separatrix of the tail island. Particles can diffuse through
the unstable fixed point and populate the head bunchlet,
leading to relaxation oscillations. A phenomenological
description of the sawtooth behaviour was suggested in
[6], but the diffusion process was assumed to originate
from the random emission of radiation, instead of a strong
instability.

Figure 8: Density-plot of the dipole mode (6 mA).

4  CONCLUSION
The threshold of the microwave instability has been
estimated over a wide frequency range of the broadband
resonator. Although the source of the instability, radial or
azimuthal mode coupling, is changing and although the
azimuthal mode number is differing greatly (from m=1 or
2 at low frequency to m=5 or 6 at high frequency), the
onset of the instability does not change a lot from 5 GHz
to 30 GHz. It is plotted in Fig. 9 as a function of the
frequency ωrστ, and has a broad minimum between 1 and
1.5. However, the threshold is not the only criterion; in
particular, lower frequency resonators are more harmful
since they can induce dipole or quadrupole oscillations of
large amplitude and sawtooth type instabilities can
develop, owing to the formation of micro-bunches.
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Figure 9: Microwave instability threshold as function of
normalized resonator frequency.

Although the primary goal of an harmonic cavity,
operating in the bunchlengthening mode, is to increase
beam lifetime in Synchrotron Light Sources, it has also a
beneficial effect on the microwave instability. As the use
of the harmonic cavity reduces strongly the peak current,
we could expect a large increase of the instability
threshold. Besides, since the final voltage, including the
wake potential, is smoothed off, it will suppress multiple
bunchlets, which would appear at relatively low current.
However, we found [3] that, even though the particle
density is divided by a factor of about 4, the instability
threshold enhancement is only a factor two. This
efficiency loss can be explained by the lower synchrotron
frequency spread due to a lower potential well distortion
(Fig.10). In case of short bunches, the non-linearity and
then the Landau damping effect of an harmonic cavity,
even operating at the third harmonic, is much smaller than
the wakefield’s one.

Figure 10:Magnitude ψ0 (left) and synchrotron frequency
(right) of the stationnary distribution vs. √2J.
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