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Abstract

The wake forces produced by a beam bunch can be reduced
by making the vacuum chamber cross-section axially asym-
metric. Furthermore, the asymmetry results in a betatron
tune shift for particles in the tail of the bunch. As a result,
transverse instabilities of the bunch should be significantly
suppressed for an asymmetric vacuum chamber.

1 INTRODUCTION

The net effect of wake fields is determined by integrating
the force over a structure period of the vacuum chamber L.
The integrated transverse force F caused by a slight offset
r0 of the leading particle from the chamber axis is conven-
tionally expressed in terms of the wake function [2]:

∫
L

Fds = −q2r0W (z), (1)

where q is the particle’s charge and z is the distance between
head and tail particles.

However, the linear approximation for the wake force
(1) contains generally an additional term, proportional to
the tail offset r [3], which vanishes for round chambers.
It means that, for round chambers, all the particles in the
bunch are in resonance with each other. For axially asym-
metric structures, however, the wake fields not only drive
the oscillations of the tail particles but also detune them
from the resonance with the driving force . Similar elec-
trodynamic properties of external RF fields in asymmetric
structures were used in Ref. [4], where it was proposed to
utilize simultaneous accelerating and focusing to provide
the acceleration and BNS damping [5] in linacs.

The importance of the betatron tune spread along a bunch
in a storage ring was shown in Ref. [6]. It was demonstrated
that this spread, introduced by means of an RF quadrupole,
has a stabilizing role for the transverse bunch oscillations.
It is natural to suppose that the tune spread produced by the
wake fields is a stabilizing factor as well. If so, the detun-
ing part of the wake may increase the thresholds of bunch
transverse instabilities.

2 DRIVING AND DETUNING WAKES

The transverse wake forces are regular functions of the
transverse offsets of the leading and trailing particles, r0

and r and can be expanded in terms of these offsets [3].
Assuming for simplicity mirror symmetry for at least one
transverse axis and neglecting the nonlinear terms, the
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Figure 1: Three types of beam surroundings.

forces can be presented as follows:∫
L

Fxds = −q2x0Wx(z) + q2xD(z)

∫
L

Fyds = −q2y0Wy(z) − q2yD(z),
(2)

where insignificant constant terms are omitted. The first
terms on the right hand sides describe the forces caused by
the offsets of the leading particle; the functions W (z) can
be referred to as the driving wake functions. The second
terms are responsible for the tune shifts of the tail particle;
the function D(z) can be called the detuning wake function.
Due to the mirror symmetry, the detuning terms for x and y
axis are described in Eqs.(2) by the single function D(z).
As follows from the form of Eqs.(2), there is no detuning
for chambers invariant over a 90◦ rotation; D(z) = 0 in this
case. To give examples, wake functions caused by the wall
resistivity are presented below for three simplified cases,
namely, for a round chamber, then, for an infinite plane and
finally, for a small cylinder. The three cases are sketched at
Figs. 1a, 1b and 1c.

For the first case of the round vacuum chamber the wake
functions can be found in Ref. [2]:

Wx(z) = Wy(z) = − 2
πb3

√
c

σz
L, D(z) = 0, (3)

where c is a velocity of light, b is the vacuum chamber ra-
dius, and σ is a wall condactivity.

For the single resistive plane, the trannsverse wake func-
tions follow:

Wx(z) = Wy(z) = D(z) = − L

2πh3

√
c

σz
, (4)

where h = |h| is the distance from the beam to the plane.
This geometry demonstrates the possibility for the detuning
wake to be equal to the driving wake.

The final example treats the case of the beam passing
along a small resistive cylinder, Fig. (1c); the detuning
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wake is shown to dominate here. Taking into account that
the image charge is located at the position r′ = rρ2/r2 and
assuming the cylinder radius ρ to be much smaller than the
distance between the beam and the cylinder, ρ � r0 =
|d| = d, the longitudinal electric field is:

Es = −2ζq

ρ

(
1 +

ρ2rr0

r2r2
0

)
+ C ln(r/ρ), (5)

which includes an arbitrary constant C . The small dipole
term in the brackets reflects a weak dependence of the fields
on the source position r0. To find the constant C, it can be
assumed that this system is bounded by a conducting cylin-
der with the radius R � r0. Then the constant C is found
by equating the expression for the monopole part of Es to
zero at this remote surface, giving C = 2ζq

ρ ln(R/ρ)
.

Then, one can obtain the integrated transverse force and
finally the wakes:

D(z) = − L

πd2ρ ln(R/ρ)

√
c

σz
(6)

Wx(z) = Wy(z) = − Lρ

πd4

√
c

σz
. (7)

Introducing the detuning factors κx =
D(z)/Wx(z), κy = D(z)/Wy(z), the results for the
various geometries are expressed as κx = ±1 for the single
plane, κx = ±d2/(ρ2 ln(R/ρ)) for the small cylinder, and
κx = 0 for the round chamber.

The driving wake function W (z) for the small cylinder
(7) is a factor ∝ ρ/d � 1 smaller than the wake functions
of the round chamber (3) or parallel plates (4) with the same
aperture. This result demonstrates how the transverse insta-
bility can be suppressed by the decrease of the driving wake
function. The detuning wakes work in the same direction;
they damp the instability even more.

Finally, note that the plane wall result κx = ±1 is valid
not only for the resistive wall wake. It applies as well to the
wake generated by a longitudinal variation of the chamber
cross-section, when the cross-section is a significantlyelon-
gated figure such as a rectangle or ellipse.

3 COHERENT STABILIZATION BY THE
DETUNING WAKE

The detuning wake modulates the betatron frequencies
along the bunch. Such a modulation introduced by means
of an RF quadrupole was studied in Ref. [6]. It was
shown there that the transverse instabilities can be strongly
damped in this case because the particles are kept out of res-
onance with each other. Following Ref. [6], the numerical
results for the influence of the detuning wake on the trans-
verse mode coupling instability are presented below.

Assuming the bunch to consist of particles with the same
synchrotron amplitude a and a homogeneous distribution
over the synchrotron phase (the so-called air-bag model

[2]), the transverse equation of motion is written

d2x(φ)
dt2 + ω2

bx(φ) = Fx(φ)
Fx(φ) = − Nq2

2πγmL

∫ |φ|
−|φ|(W (z)x(φ′) − D(z)x(φ))dφ′

(8)
Here φ is the synchrotron phase, ωb and ωs are the betatron
and the synchrotron frequencies, and N is the number of
particles in the bunch. An expansion of the deviation x(φ)
over the synchrotron harmonics

x(φ) = e−iωbt
+∞∑

n=−∞
xne−iαωst+inφ, (9)

reduces Eq. (8) to a set of algebraic equations for the eigen-
vector components xn and the eigenvalues α :

xn(α − n) = K
∑+∞

m=−∞ xmKnm, K = Nq2

2π2γmωbωsL

Knm =
∫ π

0
cos(nφ)dφ

∫ φ

0
W (z)cos(mφ′)dφ′−∫ π

0
cos((n −m)φ)dφ

∫ φ

0
D(z)dφ′ ,

(10)
where the influence of the coherent interaction is taken to be
small in a comparison with the transverse focusing, αωs �
ωb. To resolve such equations, the sum has to be truncated
to a finite number of the modes. In the numerical calcula-
tions, five modes were taken initially; then, the results were
compared with nine- and fifteen-mode truncations. All the
resistive wall wake functions have the following form:

W (z) = −Q/
√

z, D(z) = −κQ/
√

z,

where Q is the geometry factor. The examples for the de-
tuning factor κ are given above.

Figure 2 presents plots for dimensionless eigenvalues α
as functions of the dimensionless intensity parameter

I = KQ/
√

a (11)

at various detuning factors κ. The dependence of the mode
behavior on this factor is seen to be significant.

The mode coupling instability threshold is least for the
symmetric case, κ = 0. At κ = 1, coupling and decoupling
thresholds merge (degenerate case) and the beam is stable
for any current. This result is valid for any mode trunca-
tion, so it appears to be an exact property. A small coupling-
decoupling instability area appears again at higher κ.

Fig. (3) shows the threshold behavior versus coefficient
of asymmetry κ for the five, nine and fifteen modes calcula-
tion. The instability threshold has its minimum for the sym-
metric chamber, κ = 0. Then it increases with the absolute
value of the detuning factor and has two asymmetrical max-
ima at κ ≈ −1.5 and κ ≈ 2.

The results shown in this figure should be interpreted
carefully, taking into account that an asymmetry not only
introduces the detuning wake but also changes the driving
wake. For instance, the thresholds for the resistive wall, ex-
amples a) and b) (Fig. 1) with h = b, differ approximately
by a factor of 4 × 1.5 = 6, where the factor 4 is related to
the driving wake damping and the factor 1.5 is the benefit
due to the detuning for κ = −1, according to the Fig. (3).
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Figure 2: Eigenvalues α versus the intensity parameter I
for various detuning factors κ = 0 (top) and κ = 1 (bot-
tom).
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Figure 3: Intensity threshold of the transverse mode cou-
pling instability I versus the detuning factor κ for the 5-
mode (solid line) 9-mode (thick dash line) and 15-mode
(thin dash line) truncations.

4 CONCLUSIONS

Only one kind of wake function, called here the driving
wake function, has been conventionally taken into account
for the beam stability analysis. It has been shown that
this conventional approach can lead to significant under-
estimation of the beam stability thresholds for non-round
vacuum chambers. For asymmetric vacuum chamber ele-
ments, which are usual in practice, the detuning wake func-
tion must be taken into account; conventional codes like
MAFIA need to be improved accordingly. For all of the ex-
amples here, an asymmetry-driven increase of the detuning
wake combines with a decrease of the conventional wake;
both of these factors favor beam stability. These properties
of asymmetric cross-sections look promising for design of
future accelerators.

The authors are grateful to Bruno Zotter, Sam Heifets and
Vladimir Shiltsev for interesting discussions. Our special
thanks are to Jim Maclachlan and Jeff Holmes for their nu-
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