
HALF-POWER TEST OF A CW PROTON INJECTOR WITH A 1.25-MeV
RFQ*

G. Bolme, L. Hansborough, T. Hardek,  D. Hodgkins, D. Kerstiens, E. Meyer, J. D. Schneider,

 J. Sherman#, H. V. Smith, Jr., M. Stettler, R. R. Stevens, Jr., M. Thuot, L. Young,

T. Zaugg [Los Alamos National Laboratory, Los Alamos, NM], A. Arvin, A. S. Bolt,

M. Richards [Savannah River Site, Aiken, SC], P. Balleyguier [CEA-Bruyeres le Chatel, France],

J. Kamperschroer[General Atomics, San Diego, CA]

Abstract

A 75-keV, 110-mA cw proton injector capable of pulsed
operation has been developed for testing the LEDA 6.7-
MeV cw radio frequency quadrupole (RFQ).  Part of the
preliminary development of this injector included
operation of a 1.25-MeV cw RFQ at beam currents up to
100 mA.  The 75-keV LEDA injector was modified to
operate at 50 keV for these tests.  We report here on the
operational experience of the 1.25-MeV RFQ where 50-
mA beam current was accelerated through the RFQ with
90% transmission.  This half-power operation is of interest
because  (1) the injector beam current monitoring was
more reliable, and (2) sufficient  rf  power was available
to ensure the design cavity fields.  These two features
simplify the comparison of injector-RFQ performance
with design codes.  The information obtained from these
studies will be applied to the 75-keV injector during the
LEDA 6.7-MeV RFQ commissioning.

1 INTRODUCTION

Commissioning and startup of high-power cw RFQs[1]
and cw accelerators[2] require initial operation at lower
beam powers with pulsed and/or lower dc current beams.
This lower-power operation allows insertion of diagnostic
devices, which would otherwise be destroyed by the beam.
Beam power can then be ramped up by guidance from
design codes, previous experience, and careful attention to
cw beam monitoring.

A 75-mA, 1.25-MeV cw RFQ[3] tested at Los
Alamos[4] was commissioned by using a half-power
injector beam operating in dc mode.  In this paper we will
discuss the injector design considerations for the half-
power 1.25-MeV RFQ commissioning, and then will
present the measured transmission results through the
RFQ.  This work confirms earlier design calculations[5]
which predicted the 1.25 MeV RFQ transmission would
be 90% at 50-mA accelerated RFQ current.  A motivating
factor for this work was injector development for the
commissioning of a 6.7-MeV, 100-mA RFQ[6].  We refer
to 50-mA operation as “half-power” because previous
_____________________________
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measurements[7,8] have obtained 100-mA beam current
(25 mA greater than design) from the 1.25-MeV RFQ.

2 THE 50-KEV INJECTOR

A 75-keV injector based on a microwave proton source
[9], has been designed, fabricated, and tested for the Low-
Energy Demonstration Accelerator (LEDA) project.  For
the 50-keV tests the ion source beam extractor was
modified from a tetrode to a triode system[8].  The two
triode extraction geometries for the 50 and 100-mA 1.25
MeV RFQ operation are summarized in Table 1.

 Table 1.  Summary of the triode extraction systems used
in the 1.25-MeV RFQ commissioning (50 mA) and
highest power operation (100 mA).
1.25 MeV RFQ output
current (mA)

50 100

Emission aperture radius (mm) 2.5 3.4
Extraction aperture radius (mm) 3.4 3.4
Extraction gap (mm) 9.3 8.1

Figure 1 shows the line drawing for the 50-keV
injector used in these measurements.  The ion source

Figure 1.  Line drawing of 50-keV injector used on the
1.25 MeV RFQ.

beam current, ib, is measured in a dc current toroid labeled
DC1 in Fig. 1.  The source produced  ib =  58 mA
accelerated through the 2.5-mm emission aperture radius
(re) with 1270 W forward power at 2.45 GHz.  This
corresponds to an ion emission current density of ji =
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ib/(πre

2) = 295 mA/cm2.  The proton fraction was not
measured while the injector was operating with the RFQ,
but earlier proton fraction data acquired at 50 keV as
function of the ion source microwave power are shown in
Fig. 2.  Proton fractions > 90% are observed for 900 W,
and we therefore assume the ion source proton current is >
52 mA.  At 900 W, within  measurement accuracy of

Figure 2.  Proton fraction as a function of 2.45 GHz
microwave power.  The diamonds are measurements
while the line is a linear least squares fit to the data.

1%, the remaining 10% of the beam is H2

+.
Beam emittance was not measured for the 50-mA

extraction system (cf Table 1).  An estimate of the ion
source beam emittance, however, may be made by use of
the PBGUNS code[10].  This code includes a Maxwellian

Figure 3.  Simulation of the 50-keV beam using the
PBGUNS code.

ion temperature, kTi.  Figure 3 shows the trajectory and
equipotential plot for the 50-mA triode geometry
summarized in Table 1 for kTi = 1 eV.  Predictions for the
ion source rms normalized emittance, Erms, are shown in
Fig. 4 as function of kTi.   The PBGUNS code emittance
prediction, shown as diamonds connected with solid line,
is about 0.1 (πmm-mrad) for kTi = 1 eV.  This ion
temperature may be a reasonable estimate for plasma ion
temperatures in a microwave plasma source[11,12].  For
comparison, the squares connected with the broken line
are calculated from the temperature model formula, Erms =
(re/2)(kTi/mc2)1/2 [13].  The code emittance prediction is
greater than the temperature model because the PBGUNS
code also includes ion-optical extraction aberrations and
space-charge effects.   The PBGUNS prediction is close to
other ion-source emittance measurements[14].

3 RFQ BEAM MATCHING AT 50 MA

RFQ beam transmission measurements were made using
the 2.5-mm emission aperture radius shown in Table 1.
The LEBT solenoid magnets 1 and 2 were set at

Figure 4.  Prediction for the ion source normalized rms
emittance from the PBGUNS code and the temperature
model.

varying currents, and the transmission through the RFQ
was measured.  RFQ transmission is defined in per cent as
100(DC3/DC2).  DC3 refers to a dc current toroid located
at the exit of the RFQ[15].  Beam transmission
measurements are shown as contours in Fig. 5 where the
horizontal and vertical axes are the LEBT solenoid
magnets 1 and 2 current excitation, respectively.

Figure 5.  RFQ beam transmissions are plotted as contour
labels.

The 90% contour corresponds to the RFQ half-power
operation of 50 mA.  Minimal steering magnet excitation
(cf. Fig. 1, SM1, SM2) was required during these
measurements.

First-order low-energy beam transport (LEBT)
calculations using the TRACE code[16] were done using

Proton Fraction = 0.0617*Power(W) + 39
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the PBGUNS predictions for the Courant-Snyder {α,β}
parameters and the magnetic field strengths corresponding
to the 90% transmission solenoid currents shown in Fig. 5.
The TRACE beam envelopes for the {α,β} parameters
corresponding to kTi = 0 and 1 eV are shown in Fig. 6.

Figure 6.  TRACE beam envelope calculations for the
{α,β} parameters deduced from the kTi = 0 and 1 eV
PBGUNS simulations.

They give a good qualitative description of the RFQ-
matched beam; a more quantitative description of this
matching process requires use of a higher-order LEBT
code [15].   The process of using the PBGUNS and
TRACE codes together is a first-order method used for
designing and commissioning the 50-keV injector on
the1.25 MeV RFQ.

 Figure 7.   Calorimetric measurement beam power check
on the DC3 beam current monitor.

A check was made on the RFQ output beam
power and  current monitor (DC3) by measuring the water
temperature increase in the cw RFQ beam stop [17]. The
difference of the measured calorimetric and beam power -
based on the DC3 current measurement assuming
acceleration to RFQ design energy – is chosen as a figure
of merit.    These difference data are shown in Fig. 7
plotted vs. the excitation of the RFQ exit quadrupole
singlet.  These measurements were made for an RFQ
beam current of 74 mA with 1.3 l/s water flow.  The
equilibrium water temperature increase was 19oC.  The
error bars were calculated based on uncertainties in the
temperature and water flow measurements.  Some
dependence is observed on the exit quadrupole excitation,
but the calorimetry confirms the RFQ beam toroid current
measurement.
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