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Abstract be written as
It is deswablg to determine the nonlinear transfo'rmatlonXg = OV + RITOXE + TP XX + 1)
maps, especially the one-turn map, of a storage ring from

a—b yaya ya a—b aya yaya
measured BPM data for nonlinear analysis in order to im- kimp X1 X Xy + Vegpg X' X Xp Xg +

prove thg machine performance. How_ever, . accuragy,ere the summation convention on the repeated indices is
of detecting the weak signals from nonlinear effects is of;

e . . . assumedXy, is thek-th component of a phase space vector.
ten limited by the available BPM resolution. W|th.the re-Cg is the zero-order term of theth component and should
cent development of Model-Independent Analysis met

. S ~'Vanish if the closed orbit is chosen as a referenge.?,
ods, which can significantly reduce BPM random NOISGa—b ra—b andl o are the usual TRANSPORT nota-

termine th i ¢ d data b 'fions for the 1st, 2nd, 3rd, and 4th order map coefficients.
ermine the noniinear maps irom measured data by UsiNgyq,, consider BPM readings faP pulses/turns af\/

a large number of BPMs. Computational techniques aqgcationsbl by, -+~ by in a ring, obviously we can cast

some simulation results for PEP-II will be presented. the BPM-reading matrid3 for the horizontal plane into a
physical base decomposition via Eq.(1),[2, 3]
1 INTRODUCTION

Although the map approach is very successful in single par-
ticle beam dynamics studies and dominates modern beawhereF consists of all coefficients in thecomponents of
optics design tools, it is rarely used for beam diagnosis anle maps as the physical basis (see Fig.2) @rabntains
control. In order to diagnose and improve beam dynamhe corresponding initial conditions, such as

ics in a ring, various techniques are used to measure the

global properties such as chromaticity and tune-shift-with- o RmyTh RYoTEh
amplitude, which can also be extracted from a nonlinear cbh2 Ry azbz o e

one-turn map if measured. In reference [1] we argued th& = . .

possibility to measure a nonlinear one-turn map with good

B =QFT 2

accuracy, provided that the BPM resolution is sufficiently CY™ R{™ Ri;™ .. T
high. However, the required resolution is often not avail-
able. and

Recently we developed Model-Independent Analysis 1oaf p2 e (a9)?
(MIA) methods to study beam dynamics[2, 3]. One im- 1 xg po, e (24)2
portant achievement of MIA is the capability to signifi- Q= . .
cantly reduce random noise of individual BPM readings a . oo
via statistical analysis of an ensemble of BPM readings of a L oap pe, - (@)

large number of pulses at a large number of BPMs. Therel{l- h & in BPM off
fore MIA can facilitate/accomodate nonlinear map mea- ow the constant termé7’s may contain offsets

surements. This paper will explore this possibility. We Wi”also. The best way FO take out such terms is to use'the
first discuss how to apply MIA to nonlinear map measuremeasured closed orbit as the reference and use the differ-
pce orbits to construd?. It is better not to use the average

ments in general, then present some simulation results folc .
the PEP-II high energy ring. orbit as the reference because the high order terms may not

average to zero and yield significant errors, when the beam
is excited to large amplitudes, which is necessary in order
2 MAP COEFFICIENTS AS PHYSICAL to measure the high order map coefficients. On the other
BASIS OF MIA hand, it is possible to get a very accurate closed orbit in a
ing by averaging over a large number of turns of the un-
&rturbed beam.
Similarly one can construct a physical base decomposi-
tion for the vertical BPM readings with thecomponents
of the maps. However, to get the andy’ components
“Work supported by the Department of Energy, contract DE-Ac030f the maps, such information at each BPM is required.
76SF00515. Note that ther) matrix is the same for all components. In

The single particle beam dynamics can be represented
the transformation map1,_.;, that maps any initial phase
space poinfX @ at locationa to a phase space poiat® at
locationd. Using a Taylor map representatiowt, ., may
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fact, one can stack the BPM readings for both planes insurements. Then two BPMs in each plane are used to de-
one matrix and extend the physical base decompositiontermine the initial conditions using the noise-cut data. In

cover both planes. However, the benefits of doing so aminciple, one can use the orthogonal linear modes as the
still not clear. phase-space variables. However, it is probably better to

One particularly interesting nonlinear map is the onedse the model of the mentioned linear section to define the
turn map of a ring. To accommodate this into Eq.(Z), phase-space variables from orbit measurements. Note that
should contain the one-turn map coefficients &hshould even if the linear machine model might not be sufficiently
contain the measured phase-space variables one-turn aftegurate, it will not affect the sensitivity of nonlinear map
the initial values used id). Reference [1] has a concretemeasurement.
example. Note that in this casé, does not contain any
BPM patterns as in the usual MIA application. However, 4 SIMULATION FOR PEP-II
the @ matrix is still the same.

Standard least-squares fitting can be used to solve Eq.@)mulations for PEP-II high energy ring have been carried
for the map coefficients. The difficulty is to get a suffi-out to investigate the feasibility of nonlinear map measure-
ciently accuratds and@. ments. 5000 turn data at all BPMs (147 for each plane)
were generated by tracking 200 turns of 25 randomly cho-
senz andy initial conditions (no energy change) within
3 PHASE-SPACE MEASUREMENT AND 100 ranges. In addition,various levels of random noise

SVD NOISE REDUCTION were added in order to test the sensitivity of map measure-

. L ments and the effects of noise reduction described in sec-
To measure the weak nonlinearity in phase-space dynamﬁ:

. - . BPM luti I I f h
of a ring, the background has to be sufficiently clean. MIAsgn 3 resolutions are randomly selected from the

. : . . : Specified ranges.
provides a nice way to check this requirement. First obtamp ) 9 . .
. . . Fig.1 shows the singular value spectra of the simulated
a BPM-reading matrixBp ys by recording a large num-

ber (¢.9. P = 5000) of turn-by-tum data at all availavle SRS TER BB FE T e o
BPMs (e.g.M = 150) with the stored beam unperturbed. 9

Then check the singular value spectrumf Ideally it modes—the reason nonlinear map measurements is chal-

should contain only the BPM noise floor since all physic Ilengmg. The main frame shows the tail part of thepec-

X . %ra in detail. Note that the noise floor is about Ao,
motions should be well damped. Very noisy BPMs can be o ) .

S - . o much lower than the individual BPM resolutions—a statis-
easily identified at this stage. Any other significant mode . : . )
oo : . ical benefit. Otherwise, all the nonlinear signals would be
indicate systematic BPM errors and/or physical sources eF-

citing the beam. Such problems need to be fixed in order glow the 100”." noise level. The arrow indicates where
0_cut off the noise floor.

0

pursue nonlinear map measurements. We assume the sin- . .

gular value spectrum is clean. We will take the average able 1 shows the rms errors of dynam|cal variable mea-

orbit as the reference orbit and identify the noise level fo?;urements for various EfPM resolut|ons' and the effects of

later use. noise-cut. Despite noticeable f|l.,IC'[u.atI(.)r'18, the accuracy
Now measure another BPM-reading matrix with Iargeof phase-space measurements is significantly improved,

. . X which makes nonlinear map measurements feasible with-
(e.g. &) betatron oscillations excited by fast kickers for P

example. Subtract the mentioned reference orbit from each,, Singular value spectra of x-plane
measured orbit in order to get rid of BPM offsets and de- s000 PN 5000 yPlane
fine the expansion points of the measured maps. At this*| ¢ gs00 I ’
stage, two MIA procedures can be employed to improve the | & 4000 = ]
phase-space dynamics measurement: SVD noise reductigrglsf " §35°° o 2000 |
and degrees-of-freedom analysis. g £ s00

To reduce the random noise, compute a Singular Valug *| . 7% 1500 1
Decomposition (SVD) a8 = USV7, identify the noise £ | 52000 100 ,
floor or use the noise level mentioned above, set the cog g1
responding noise singular values to zeroes, and then r'§-2°’ where to cut noise 1000 500 1
multiply these matrices to construct a noise-cut mal#ix 815 - / 502 - - 1
This simple procedure can reduce the BPM random noise,...... i*%“ T Zé’ingS&erﬁ,eaéﬂex %050 |
by a factor of\/%, whered is the number of remaining | ¢
singular values above the noise floor. Depending on the sit- T,

uation, such noise reduction could be rather significant, es- %
pecially when the BPM resolution is poor and one is strug-
gling to measure a few leading nonlinear coefficients.  Figure 1: Singular value spectra of simulated data with *

The degrees-of-freedom analysis could help to locate ttier signal only, *” for 100 £ 20um BPM noise only, and
best linear section in the ring for phase-space variable meat+" for both. Insertions show the full vertical scale.

50 . . 100 150
singular value index
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Table 1: rms errors of phase-space variable measuremefigure 3: 16 normalized one-turn map coefficients up to

BPM reso-1_ without noise-cut with noise-cut the 3rd order (x-component).o™ and “e” are for 100 +
lutions m) [[z(pm) 2 (@ ¥y ¥ |z 2 |y | Y 20um BPM noise, with and without noise-cut respectively.
100+20 102 | 7.1 |156|14.|/36./2.6/25.|2.1 0.4 ‘
80+16 74. | 6.4 (126|11./17.|2.1|24.]2.0 ol l”znd order r3fd order
60+12 55. | 4.9 |103|9.3|/12./2.4/20./1.8 w .
40+8 30. | 2.3 [56.]5.1[[8.2[1.2[14.]1.3 5 of NPT
20+4 20. | 1.7 [30.[3.4[10.[1.1]11.[1.3 £ " )
g-02}
B
out stringent BPM resolution requirements. 204
Fig.2 plots the linear and a few nonlinear map coeffi- g
cients along all the BPMs. They are normalized to the 10 < -06; — exact
of phase-space variables, thus reflect the strength of each 08 o with noise-cut
nonlinear term near the border of dynamical aperture.The . without noise-cut |
apparent non-sinusoidal patternsii; and R;» are due 1 ‘ ‘ ‘ ‘ ‘ ‘
to the uneven BPM locations. The peaks in the 2nd or- 0 5 10 1520 25 30 35

.. . map coefficient index
der coefficients are due to the main sextupoles around t8g\is are also shown for the case of 100 BPM resolu-

interaction point at the center. Such spatial patterns forfy g with and without noise-cut, on top of the exact solid
the physical bases for the BPM readings. Simulation res;es. Although the main features can be obtained even

without noise-cut, the accuracy is significantly improved

106 normalized map (x-component) coefficients by the noise-cut, which is crucial (after all, everyone knows

2 At . A , where the sextupoles are). Note that the linear coupling
X o XI[\ [\f\ /\ /\I\ I\j/\\“ﬁkﬁ\//\\j \ f\ /W\ /\/’\\ /\ I /‘\/\ [l Ry termsR,3 andRy, can be obtained rather accurately. Such
V \J\ VUV UV VUV Y \J \f\/ information can be used to calculate the global linear cou-
25 50 100 150 pling coefficient and furthermore help to localize the cou-
2 A — — pling sources. The errors ifi; ;3 are due to the weakness
X O,f\ /\\f\ /\/'\\ /\\/'\\/’\ /\/\N\[\ [\U/\w\\ /\/\\I’\\[\ /A\/\ /\ || R of this nonlinear coupling term.
VUV Y d&’ VWUV YV VY Fig.3 plots the results of simulated one-turn map mea-
25 ) 100 150 surement with 10Qum BPM resolution. Again the effect
0.1 ‘ ‘ o of the noise-cut is obvious. The accuracy is sufficient to
Caanan i manhankiah MAA . ] R reveal useful nonlinearity information. For example, a few
y o ANNAANAAMAASAN “egeen A 13 h !
VAVYVIWIRVEY vw percent error of the main sextupole strength should be de-
015 25 100 150 tectable according to the_ simulations. More effective meth-
0.05 : ) i ods are under investigation.
AR AR ek i A N hA R4
v oAANTA A A AT /"J\ \j‘\.“ fi
PP MJ & 5 CONCLUSION
0.05 ‘ !
0_50 ‘?0 190 150 Measurements of nonlinear (especially low order) maps in
O i o e o g gt o | T a ring become feasible with MIA methods, provided that
< el [ | ™ systematic BPM errors are tolerable. Nonlinear map mea-
1 ‘ ‘ surements can yield localized as well as global (one-turn
10 ?0 190 150 map) nonlinearity information in a ring, which is valuable
05 . to beam dynamics study and machine improvement.
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