
PARALLEL OBJECT-ORIENTED DESIGN IN FORTRAN FOR BEAM
DYNAMICS SIMULATIONS ∗

J. Qiang† ,R. D. Ryne, S. Habib, LANL, Los Alamos, NM
Abstract

In this paper we describe an object-oriented software
design approach, using Fortran 90 (F90) and the Mes-
sage Passing Interface (MPI), for modeling the transport
of intense charged particle beams. The object-oriented ap-
proach improves the maintainability, resuability, and ex-
tensibility of the software, while the use of explicit mes-
sage passing provides the freedom necessary to achieve
high performance. Furthermore, an approach to object-
oriented design based on Fortran will help those physicists
familiar with procedure-oriented programming to make the
transition to object-oriented design. In this paper we will
describe the implementation of this approach and our suc-
cess in developing two-dimensional and three-dimensional
parallel beam dynamics codes that achieve high perform-
ance with only a small overhead associated with the object-
oriented design.

1 INTRODUCTION

Object-oriented design is being widely applied in computer
software engineering to implement complex codes which
possess good maintainability, reusability, and extensibility.
This technique also enables the encapsulation of detailed
communication syntax in parallel computing, thereby re-
ducing the extent of difficulty of parallel programming us-
ing MPI. In the parallel computing environment, such ef-
forts have mostly been directed to the design of object-
oriented frameworks using explicit message passing and
C++ [1]. However, in the the accelerator physics com-
munity, Fortran still remains a popular language for de-
manding numerical simulations. Most popular used ac-
celerator codes were programmed using Fortran based on
procedure-oriented software design. It will be beneficial to
the accelerator community to be able to to take advantage
the object-oriented software design using Fortran language.

In this paper, we present an effort to implement object-
oriented software design using F90 with MPI in the sim-
ulation of charged particle transport in accelerators. The
paper is organized as follows: The physical system is de-
scribed in Section 2, the implementation of object-oriented
software design is presented in Section 3, parallel domain
decomposition is discussed in Section 4, and performance
tests are described in Section 5. We conclude by present-
ing an application to the simulation of high intensity beam
transport through a superconducting linac.

∗Work supported in part by DOE Grand Challenge in Computational
Accelerator Physics.

† Email: jiqiang@lanl.gov

2 PHYSICAL SYSTEM

The physical system addressed in this paper consists of
an intense charged particle beam and a linear accelerating
system. The accelerating system contains three types of
beam line elements: drift spaces, quadrupole magnets and
rf gaps. The forces acting on the beam particles are due
to externally applied fields and the inter-particle Coulomb
field. The dynamics of particles is governed by the Poisson-
Vlasov system of equations. In accelerator simulations, it
is a usual practice to takez to be the independent variable
rather than the timet. The Vlasov equation is written as:

∂f

∂z
+ [H, f ] = 0 (1)

and the Poisson equation is

∇2φ = −ρ/ε (2)

wheref is the particle distribution function in phase space,
[, ] is the Poisson bracket,H is the Hamiltonian of system
with z as the independent variable,φ is the space charge po-
tential from the Coulomb interaction,ρ is the charge dens-
ity associated with the distribution function, andε is the
dielectric constant in vacuum. This system of equations is
solved using a particle-in-cell method.

3 OBJECT-ORIENTED SOFTWARE
DESIGN IN FORTRAN 90 FOR
ACCELERATOR SIMULATION

In this study, parallel object-oriented software design is im-
plemented using F90 and MPI. Object-oriented design is
an approach encompassing the process of object-oriented
decomposition [2]. In an objected-oriented design, after
analysis of the (complex) physical system, the system is
first decomposed into simpler physical modules. Next, ob-
jects are identified inside each module. Then, classes are
abstracted from these objects. Each class has interfaces
to communicate with the outside environment. Then rela-
tionships are built up among different classes and objects.
These classes and objects are implemented in a concrete
language representation. The implemented classes and ob-
jects are tested separately and then put into the physical
modules. Each module is tested separately before it is as-
sembled into the whole program. Finally, the whole pro-
gram is tested to meet the requirements of problem.

Our implementation of the object-oriented software
design methodology to beam dynamics studies in acceler-
ators results in the decomposition of the physical system
into five modules. The first module handles the particle

0-7803-5573-3/99/$10.00@1999 IEEE. 366

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999



information consisting of theBeam, BeamBC, and theDis-
tribution classes. The second module handles information
regarding quantities defined on the field grid containing
Field andFieldBC classes. The third module handles the
external focusing and accelerating elements containing the
BeamLineElembase class and its derived classes, the drift
tube class, the quadrupole classes, and the rf gap class. The
fourth module handles the computational domain geometry
containing theGeometryclass. The last module provides
auxiliary and low level classes to handle explicit commu-
nication and input-output containing thePgrid2d, Commu-
nication, Utility , InOut andTimer classes. The class dia-
gram of the object-oriented model for a beam dynamics
system is presented in Fig. 1.

Figure 1: Class diagram of the accelerator beam dynamics
system

The detailed method of writing objected-oriented pro-
grams using F90 was discussed by Decyk et al.[3]. In
the following, we will give an example of using run-time
polymorphism to implement the beam line elements in our
simulation. In the beam dynamics simulation with F90,
we define a base classBeamLineElem, and three derived
classes for the drift, quadrupole magnet, and rf gap beam
line elements. The scaled down sketch of this class is be-
low:

module BeamLineElemclass
use DriftTubeclass
use Quadrupoleclass
use Rfclass
type BeamLineElem

private
type (DriftTube), pointer :: pdrift
type (Quadrupole), pointer :: pquad
type (Rf), pointer :: prf

end type BeamLineElem
interface assign_BeamLineElem

module procedure assign_quad,&
assign_rf,assign_drift

end interface
contains

function assign_drift(pdrift) &

result(ppdrift)
function assign_quadf(pquad) &

result(ppquad)
function assign_rf(prf) result(pprf)
subroutine update_BeamLineElem(this,&

z0,z1)
end module BeamLineElemclass

Since there is no direct support of inheritance in F90,
we define a derived type in theBeamLineElembase
class which contains three pointers to the derived classes
as private data members. An overloaded functionas-
sign BeamLineElemwhich includes three assignment func-
tions is used to initialize the baseBeamLineElemclass ob-
ject with different derived class object addresses. In each
assignment function, only one pointer is initialized and the
other two pointers are set to null. In the public functionup-
dateBeamLineElemof the base class, updating operations
from derived classes are selected according to the differ-
ent actual object association of pointers in the base class
data member. The polymorphism is achieved by calling
this subroutine with a constructed baseBeamLineElemob-
ject in the application.

4 PARALLEL NUMERICAL
ALGORITHM

In the following, we will describe the parallel numerical
algorithm used in this study. A domain-decomposition ap-
proach is employed in the algorithm. For example, in the
three-dimensional beam dynamics simulation, the physical
computational domain is defined as a 3-dimensional rect-
angular box with rangexmin ≤ x ≤ xmax, ymin ≤ y ≤
ymax, andzmin ≤ z ≤ zmax. This domain is decom-
posed on they − z plane into a number of small rectan-
gular blocks. These blocks are mapped to a logical two-
dimensional Cartesian processor grid. Each processor con-
tains one rectangular block domain. The range of each
block on a single processor is defined asxmin ≤ x ≤
xmax, ylcmin ≤ y ≤ ylcmax, andzlcmin ≤ z ≤ zlcmax.
Here, the subscriptlcmin and lcmax specify local min-
imum and local maximum, respectively, of computation
domain. The particles with spatial positions within the
local computational boundary are assigned to the processor
containing that part of physical domain.

The explicit communication in the parallel computation
is encapsulated in the communication class. A particle
manager function is defined to move the particles from one
computation domain to another computation domain. A
field manager function is defined to resize the grid num-
ber which is needed in solving Poisson's equation with
open boundary condition. The grid exchange functions are
defined to get the grid information from neighboring pro-
cessors.

For the particles local to the computational domain, a
symplectic integration scheme is employed to advance the
particles[4]. The charge density is obtained using a cloud-

367

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999



in-cell charge deposition scheme. The potential in Pois-
son's equation is obtained using Hockey's algorithm for
open boundary condition[5]. The electrical field is calcu-
lated using a central finite difference scheme and interpol-
ated onto the particles.

5 PERFORMANCE TEST

The performance of the object-oriented F90/MPI parallel
codes was tested on both SGI/Cray T3E-900 and SGI Ori-
gin 2000. As a test of the overhead in object-oriented F90,
which might be due to the use of pointers and dynamic-
ally allocated arrays, we give a comparison of the time
costs on SGI/Cray T3E between the object-oriented code
and the conventional procedure-based code in Fig. 2. We

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

tim
e 

(s
ec

s)

PE

OOF90/MPI
F90/MPI

Figure 2: Time costs of object-oriented and procedure
based F90/MPI codes as a function of PEs on T3E

note that even on a small number of processors, the over-
head from object-oriented code is about10%. This over-
head decreases with increasing number of processors. As
an example, in Fig. 3 we also give the time costs of the
three-dimensional object-oriented F90/MPI code on Cray
T3E and SGI Origin as a function of the number of pro-
cessors. Good scalability is achieved on both machines.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70

tim
e 

(s
ec

s)

PE

SGI/Cray T3E-900
SGI Origin 2000

Figure 3: Time costs of 3-dimensional object-oriented
F90/MPI code as a function of PEs on T3E and SGI Origin

6 APPLICATION

As an application, we simulate the beam transport through
three super-conducting sections in a design of the APT
linac[6]. Fig. 4 gives the transverse maximum amplitudes
as a function of kinetic energy. These maximum amp-

0

0.005

0.01

0.015

0.02

200 300 400 500 600 700 800 900 1000

M
ax

im
um

 A
m

pl
itu

de
 (

m
)

Kinetic Energy (MeV)

x_max
y_max

Figure 4: Transverse maximum amplitudes x and y of beam
as a function of kinetic energy

litudes set the lower bound of the minimum aperture that
can be achieved in the design.

7 CONCLUSIONS

In this paper we have described parallel object-oriented
design in Fortran for beam dynamics simulations. As pre-
viously stated, our implementation with F90/MPI encap-
sulates the details of communication in low level auxiliary
classes. This also provides the benefits of better maintain-
ability, reusability and extensibility of software with small
performance overhead.

8 ACKNOWLEDGMENTS

We thank Dr. Viktor Decyk for helpful discussions. This
research used resources of the National Energy Research
Scientific Computing Center and resources of the Ad-
vanced Computing Laboratory at Los Alamos National
Laboratory.

9 REFERENCES

[1] G. Wilson, L. Paul, (ed.), Parallel Programming Using C++,
MIT Press, Cambridge (1996).

[2] G. Booch, Object-Oriented Analysis and Design with Applic-
ations, Benjamin/Cummings, Menlo Park, CA, (1994).

[3] V. K. Decyk, C. D. Norton, and B. K. Szymanski, Computer
Physics Communications 115, p.9 (1998).

[4] R. D. Ryne and S. Habib, ”High Performance Computing for
Beam Physics Applications”, LA-UR-94-2904 (1994).

[5] R. W. Hockney and J. W. Eastwood, Computer Simulation
Using Particles, Adam Hilger, New York, (1988).

[6] T. P. Wangler, private communication (1998).

368

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999


