
OBJECT ORIENTED C++ SOFTWARE COMPONENTS FOR
ACCELERATOR DESIGN *

D. L. Bruhwiler,# J. R. Cary,+ and S. G. Shasharina, Tech-X Corporation, Boulder, CO

Abstract

Object oriented programming techniques make it possi-
ble for accelerator designers to independently develop
C++ software components that can work together. As an
example of this approach, we discuss some of the soft-
ware components being developed at Tech-X Corpora-
tion, including: TxSTD, a library of standard utilities [1];
TxID, a library of data-holding and nonlinear dynamics
classes [2]; TxAC, an accelerator modeling class library
[3]; an X/Motif library used in the MAPA application [4]
for interactive visualisation of dynamical systems such
as particle accelerators; TxAN, a library of analysis and
simulation classes relevant to dynamical systems; and
the LION++ nonlinear optimization library [5].

1 OBJECT-ORIENTED PROGRAMMING
The computer software industry has been rapidly moving
towards the use of object oriented programming (OOP)
[Ref.'s 6-10]. OOP provides a superior mechanism for
rapid development and testing, as well as ease of mainte-
nance and extensibility for large scientific codes.
OOP consists of designing classes, where a class is a for-
mat for holding and interacting with data. An object is a
particular instance of a class, just as 3.1 is a particular
instance of a real number. Each object has its own data,
while all objects of a given class share the same func-
tions (called methods). A program is constructed by first
defining the classes. The program instantiates objects
corresponding to the classes and, by calling the public
methods of these objects, manipulates or displays the
data. The public methods of a class define its interface.
The three defining properties of OOP are encapsulation,
inheritance and polymorphism. Encapsulation refers to
the fact that objects are accessed only through a public
interface, while their internal data and implementations
remain hidden. This feature ensures that the code is safe
from unwanted modifications. Inheritance allows the
programmer to define new classes that inherit most of
their coding from existing classes, only modifying or
adding data and methods as needed. This allows for
flexibility to increase the capability of an application in
ways not foreseen by the original programmers, without
rewriting the code. Polymorphism allows different

 * Work supported by Tech-X Corporation and by the U.S. Department

of Energy, grant no. DE-FG03-96ER82292.

 # Email: bruhwile@txcorp.com

 + Also, University of Colorado Physics Department, Boulder, CO

classes to support the same interface but fulfill requests
differently at run time. This makes extensibility possible
– a new class that implements a new algorithm can in-
herit from an existing class and be used in its place.
C++ is the best available OOP language for scientific ap-
plications. The “expression template” technique [11-13]
allows C++ code to perform as well as optimized For-
tran77 in vector loop comparisons. Furthermore, the use
of "generic programming" and "template meta-program-
ming" methods has yielded C++ linear algebra solvers
that are faster than Fortran77. [14] The base of numeri-
cal libraries for C++ is rapidly increasing, [15] and, be-
cause C++ is a superset of the well-established C lan-
guage, it has access to a great wealth of legacy C code.

2 PUTTING THE PIECES TOGETHER
Leo Michelotti developed the first C++ class library for
modeling beam dynamics in an accelerator [16] and de-
serves credit for introducing the accelerator physics com-
munity to the benefits of C++ and object oriented pro-
gramming. Other C++ codes are now under
development, including MAD-9 [17], LEGO [18],
Teapot++ and MAPA [4,19]. Unfortunately, these
codes are independently developed, and the C++
libraries used in one code cannot be used in the others.
The goal of the CLASSIC project [20] was to standard-
ize the structure and interface of a C++ accelerator dy-
namics library in order to promote the sharing and reuse
of code among the various developers. We propose an
alternative approach – the use of template based “traits”
mechanisms [21-23] – to make C++ accelerator class
libraries interoperable and, hence, true software compo-
nents. First, we briefly describe the class libraries under
development at Tech-X Corporation, then we elaborate
further on the use of traits.

3 ACCELERATOR DYNAMICS LIBRARY
The Tech-X accelerator dynamics library TxAC, now at
the first alpha release, has been used to successfully
model the Advanced Light Source, finding correct values
for tunes and dynamic apertures. TxAC includes an SIF
parser (Standard Interchange Format, the MAD-8 input
language [24]) that can create an accelerator model
(beamlines, elements, and properties of the charged par-
ticle) with full support for mathematical formulas.
TxAC comes with a number of built-in element types
(e.g. quadrupoles, dipoles, thin RF cavities) which use
analytical models for the electric and magnetic fields.
Each element type knows how to calculate the phase

0-7803-5573-3/99/$10.00@1999 IEEE. 369

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

space map for particles passing through it, so the code
can be used for tracking, and it allows the user to specify
whether tracking should use 2, 4, or 6 dimensions. [19]
TxAC also includes a beamline class, allowing the user
to define an arbitrarily deep hierarchy of beamlines
within beamlines -- critical for describing large rings,
which may consist of only a dozen or so unique elements
that are repeated in various combinations for a total of
hundreds or thousands. Synchrotron radiation effects are
optional.
The TxAC class hierarchy is shown in Fig. 1. A new
element type can derive from the most appropriate part
of this hierarchy and thus obtain most of the needed
features. New features can then be added in the derived
C++ class, which must also provide the code that im-
plements tracking through the element. Once a new
element class has been defined, it need only be regis-
tered with a name in the TxacElements file and, upon
recompilation, the new element type will be supported
by the parser and the graphical user interface (GUI).

 4 ACCELERATOR ANALYSIS LIBRARY
The accelerator analysis library TxAN uses TxAC to cal-
culate matched Twiss parameters (or the linear and 2nd-
order dispersion) for any closed orbit or to propagate
specified initial values element by element through a
beamline. TxAN can also calculate the position and ori-
entation of all beamline elements in a global Cartesian
coordinate system, or use Monte Carlo methods to
propagate the RMS moments of a particle distribution.
The classes of TxAN inherit from the data holding
classes of TxID and define a new data holding class for
storing the analysis results. Developers can define a new
C++ class for accelerator simulation, inheriting appro-
priately from the TxAN hierarchy. The data resulting
from the new simulation is stored in the plot data class,

while any parameters relevant to the simulation are
stored in the TxDataSet class of TxID. The X/Motif
GUI can extract data from these classes, thus allowing
the user interactive control over the simulation with im-
mediate rendering of the resulting data.

5 GRAPHICAL USER INTERFACE
The X/Motif GUI supports on-line tracking and renders
the resulting surface-of-section (SOS) plots. Initial con-
ditions for the next particle can be specified simply by
clicking in the windows. These SOS plots can be resized
interactively, and the phase space variables can be paired
up in any order. Fixed points can also be found.
The GUI also allows one to browse the local file system
for an appropriate input file, and then to save changes in
the same file or in a new file. The GUI can plot a sche-
matic layout of the accelerator, warning the user if, for
example, a ring does not close on itself.
The GUI provides appropriate windows for interactively
changing any relevant parameters for the accelerator, for
individual elements or for the analyses. For each type of
analysis, the GUI provides a menu item allowing the
user to activate the simulation, and then renders line
plots of the resulting data. Developers can define new
element classes or analysis classes through inheritance,
and these new types will be directly supported by the
GUI after compiling the new classes and relinking the
application.

 6 LION++ OPTIMIZATION LIBRARY
 LION++ [5] is a suite of flexible and extensible C++
software components for numerical computing. Still be-
ing actively developed, the present release features
TxOptSlv, a library for the optimization of nonlinear
user-specified functions, and TxBase, a library of unary
functors and other general utilities. LION++ takes full
advantage of sophisticated templating techniques and
object oriented design in order to provide users with
maximum flexibility in the choice of argument type and
return type for the merit function that needs to be opti-
mized and in the configuration of options for the built-in
algorithms.
 Three multidimensional algorithms have been imple-
mented, including nonlinear simplex and Powell, which
do not need the gradient of the function, and one due to
Fletcher, Reeves, Polak and Rebiere (FRPR), which
does require access to the gradient. The Powell and
FRPR algorithms require access to 1-D line optimization
algorithms. Three 1-D algorithms have been imple-
mented, including golden section and Brent, which do
not need the function derivative, and a modified secant
algorithm, which does require access to the derivative.
 At present, all of the optimization algorithms are uncon-
strained although we are currently implementing algo-
rithms that constrain the arguments in various ways. We

Figure 1: Schematic showing TxID object hierarchy (upper
right), the TxAC object hierarchy (bottom) and one example
of interface with the X/Motif graphical user interface (upper
left).

TxTransMap

TxID

TxDataSet

TxMap

TxDataAndMap TxDataTransMap

Accelerator

Element

BeamlineSteppable

Quadrupole
Sector Bend
ThkMultipole

ElemGeometry

Multipole
Cavity
Kicker
Monitor

ThinElement

SimpElemImg BeamlineImg

ElementImg

GUI

TxacElements

Drift
Solenoid
ElSeparator

FlatElement

370

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

are also now implementing the Levenberg-Marquardt al-
gorithm, which is effective for nonlinear least squares
fitting and, more generally, for simultaneous optimiza-
tion of many nonlinear functions. LION++ is readily
extensible so developers can implement their favorite
algorithms or create a thin interface to other C and C++
algorithms, all with the same convenient user interface.

 7 THE TRAITS MECHANISM
“Traits” are defined through a template class or struct.
For example, Fig. 2 shows the definition of two traits for
a 1-D array class: the type of the argument held by the
array and a public method Resize() that will change the
length of the array. It is assumed that the 1-D array sup-
ports the [] operator for accessing the elements. The
TxArrayWrap class in Fig. 2 wraps a simple C-style
pointer, which does not have built-in resizing capability.
In LION++, the argument list for multidimensional func-
tions is declared to be of type VecType, and all optimi-
zation classes are templated over VecType. Users must
instantiate a templated optimization object, where the
template parameter specifies the argument type of the
function to be optimized. Thus, LION++ is “container-
free" as defined in Ref. [23].

The method for tracking in an accelerator library (called
Advance() in TxAC) could be templated over the type of
the class that is to be tracked. Then the traits mechanism
could be used to allow this class to be any of: a) a single
particle of precision float, double, etc.; b) a 1-D array of
particles, with the array type completely arbitrary; c) a
generalized user-defined particle class; or d) any C++
differential algebra (DA) library. Thus, the traits mecha-
nism immediately allows for some interchange of soft-
ware components between different C++ code develop-
ers (particle classes and DA libraries).
Taking this idea a step further, one could template the
controlling class of the accelerator dynamics library
(called Accelerator in TxAC) over the element type. In
this case, the “traits” would include methods for reading
and writing the physical data associated with an element,
tracking a particle (or array, or DA vector) through an
element, etc. With this approach, the developer of one
class library could use the element classes from another

accelerator class library, allowing for direct model inter-
comparisons.
There are two prices to be paid for this approach. The
first is that such heavy use of templates can lead to very
long compilation times. The second is that the use of
traits requires the use of rather awkward syntax in the
source code for the accelerator class library.

8 CONCLUSIONS
A “container free” approach to the development of C++
class libraries for the modeling and design of accelera-
tors is an elegant and relatively straightforward way to
make the many existing class libraries interoperable.
This approach places some burdens on the library devel-
oper, but it avoids the difficulty of trying to convince
developers that they should base their code on some
standard class library design.
The authors thank Julian Cummings for discussions re-
garding the use of traits and John Verboncoeur for
discussions regarding object-oriented programming.

9 REFERENCES

[1] TxSTD page, URL http://www.techxhome.com/freestuff/txstd
[2] TxID page, URL http://www.techxhome.com/freestuff/txid
[3] TxAC page, URL http://www.techxhome.com/freestuff/txac
[4] MAPA page, URL http://www.techxhome.com/products/mapa
[5] LION++ page, URL http://www.techxhome.com/products/lion
[6] G. Booch, “Object Oriented Development,” IEEE Transactions on

Software Engineering 12, 211 (1986).
[7] B. Stroustrup, The C++ Programming Language, Third Ed.

(Addison-Wesley, Reading, Massachusetts, 1998).
[8] S. B. Lippman and J. Lajoie, C++ Primer, Third Ed. (Addison-

Wesley, Reading, Massachusetts, 1998).
[9] E. Gamma, R. Helm et. al, Design Patterns (Addison-Wesley,

Reading, Massachusetts, 1995).
[10] A. Elins, Principles of Object Oriented Software Development

(Addison-Wesley, Reading, Massachusetts, 1994).
[11] A. D. Robison, "C++ Gets Faster for Scientific Computing",

Computers in Physics 10, 458 (1996).
[12] T. Veldhuizen, "Expression Templates," C++ Report 7 (1995).
[13] S. Haney, "Beating the Abstraction Penalty in C++ Using Expres-

sion Templates", Computers in Physics 10, 552 (1996).
[14] The Matrix Template Library (MTL) home page at URL

http://www.lsc.nd.edu/research/mtl/
[15] URL http://monet.uwaterloo.ca/blitz/oon.html#libraries
[16] L. Michelotti, “MXYZPTLK and Beamline: C++ Objects for

Beam Physics,” AIP Conf. Proc. 255 (Corpus Christi, 1992).
[17] MAD-9 web site, URL http://wwwslap.cern.ch/~fci/mad/mad9
[18] Y. Cai, M. Donald, J. Irwin, Y. Yan, “Lego: A Modular Accel-

erator Designer Code,”SLAC-7642, August 1997.
[19] D. L. Bruhwiler, J. R. Cary and S. G. Shasharina., Proc. Sixth

European Particle Accelerator Conf., (Stockholm, June, 1998).
[20] CLASSIC web site, URL http://wwwslap.cern.ch/classic
[21] N. C. Meyers, “Traits: a New and Useful Template Technique,”

C++ Report 7 (1995); URL http://www.cantrip.org/traits.html
[22] T. Veldhuizen, “Using C++ Trait Classes for Scientific Comput-

ing;” URL http://monet.uwaterloo.ca/~tveldhui/papers/traits.html
[23] G. Furnish, “Container-Free Numerical Algorithms in C++,”

Computers in Physics 12 (3) (May, 1998).
[24] MAD-8 web site, URL http://wwwslap.cern.ch/~fci/mad/mad8

struct TxUnaryContainerTraits

VecType
struct TxUnaryContainerTraits <std::vector<ArgType>>

typedef ArgType ValueType;
static void Resize(std::vector<ArgType>& vec, int dim) {
 vec.resize(dim); }

struct TxUnaryContainerTraits <TxArrayWrap<ArgType>>

typedef ArgType ValueType;
static void Resize(TxArrayWrap<ArgType>& array, int dim) {
 array.Resize(dim); }

struct TxBinaryContainerTraits

VecType, RetType
struct TxBinaryContainerTraits <std::vector<ArgType>, RetType>

typedef typename TxBinaryNumberTraits<ArgType, RetType> ::
 PromoteType PromoteType;
typedef std::vector<PromoteType> PromoteVectorType;

Figure 2: Unary (above) and binary (below) traits for
containers (user-defined 1-D arrays).

371

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

