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Abstract

Experimental studies were performed, to measure the non-
linear behavior of the momentum compaction factorα
at the BESSY II electron storage ring. Based on these
results the momentum acceptance of the storage ring
can be derived. Several sets of measurements at differ-
ent values of the horizontal chromaticity in the range of
∆Qx/(∆p/p0) = ξx = −5.5 . . . + 8.1 were generated.
Depending on tune and horizontal chromaticity particles in
the range from−4% < ∆p/p0 < 8% could be stored.

1 INTRODUCTION

BESSY II is a 1.7 GeV, low emittance, high brilliance syn-
chrotron radiation light source recently started operation
at Berlin-Adlershof [1]. The lattice of the storage ring is
a 16-cell ‘Double Bend Achromat’ with alternating high
and lowβ-values and zero dispersion in the straights. The
ring circumference is 240 m. The transverse tunes are
Qx = 17.8 andQy = 6.7, the natural chromaticities are
ξnat.,x = −52.7 andξnat.,y = −26.8.
A source of major life time limitations of the stored elec-
tron beam are scattering processes, were electrons suffer
a sudden energy change, well known as Touschek effect
and bremsstrahlung process [2]. To avoid a loss of these
scattered particles and to achieve a good beam lifetime, the
transverse and longitudinal momentum acceptance of the
machine is designed for∆p/p0 ± 3%. One task of the pre-
sented measurements was the determination of the actual
machine momentum acceptance.

2 THE MOMENTUM COMPACTION
FACTOR α

2.1 Definition ofα

The length of the particle orbit together with the mag-
netic field on this orbit defines the energy of the electrons.
The rf-frequency and its harmonic number define the path
length of the electrons in the ring. Because of the fast radi-
ation damping, the particle energy will follow a change of
the rf-frequency or the magnetic field within few millisec-
onds. In the experiments discussed here the rf-frequency
at fixed magnetic field was detuned to change the electron
energy.
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To describe changes of the path length for electrons with
small momentum deviations it is common, to apply a series
expansion of the path length with respect to the momentum
deviation [2]. The influence of betatron oscillations on the
momentum compaction factor can be ignored here, because
theire amplitudes are less than 1 mm. It seems that there is
not a unique definition of the type of series expansion in
literature. For the following discussion two types of defini-
tions for the momentum compaction factorα are required:

αp =
dL

dp
/
L

p
, and α =

∆L
∆p

/
L0

p0
.

In case of the first definitionαp = αp(p) is based on
small changes of the momentum around some specified
momentum valuep. It is given by the differential change
of the path lengthL with respect to the momentum. This
αp depends on the local properties of the particle orbit,
independent of the reference orbit lengthL0 and reference
momentump0. In our experimentsp could typically differ
from the reference valuep0 by a few percent, whereas the
‘differential’ changes are about a factor ten smaller.
The second, similar definition is based on difference ex-
pressions, valid for larger momentum changes of the order
of few percent with respect to the reference momentum
p0. It is normalized with respect to the reference values of
momentump0 and orbit lengthL0. Both definitions,αp

andα, are functions of the momentump.
The definitions ofα andαp are not independent of each
other, they are connected by a differential equation :

αp =
1 + ∆p/p0

1 + α∆p/p0

d(α∆p/p0)
d(∆p/p0)

.

In the case thatp approachesp0 both definitions yield the
same limiting valueα0:

lim
p→p0

α = lim
p→p0

αp = α0 .

Based on linear approximations, this value can be calcu-
lated:

α0 =
1
L0

∮
ring

Dx

ρ
ds,

wereDx is the linear dispersion function andρ the dipole
bending radius. For the present storage ring optics we have
α0 = 7.3 · 10−4.
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Figure 1: Measured normalized synchrotron tuneQs as a
function of the relative rf-frequency change(∆frf )/frf,0

for two different values of the horizontal chromaticityξx.
The measured points are fitted by a polynomial (line).

2.2 Reconstruction ofα from measurements

From the longitudinal beam dynamics the expression for
the longitudinal tuneQs of the synchrotron oscillation is
given by [2]:

Q2
s,p =

hηpeVcav cosψp

2πβpcp
,

wereh is the harmonic number,Vcav the effective peak
Voltage of the rf-frequency,ψ is the phase angle of the
synchronous particle andβc the velocity of the particle.
The indexp is used to point out that these values are
related to the local properties of the orbit, defined for
a given momentump. Only the local orbit dynamics is
involved, because the relative energy spread of the bunches
is ‘differentially’ small, less than10−3.
The accurate estimate of the effective rf-Voltage seen by

the beam is rather difficult. By relating the longitudinal
tune to the tune atp = p0 the expression can be simplified
and becomes independent of the Voltage:

Q2
s,p

Q2
s,0

=
ηp cosψp

βpp
/
η0 cosψ0

β0p0
.

The phase angleψ defined by the large amplitude of the
rf-Voltage and a comparably small energy loss per turn
is only some few degrees. The change of this angle with
respect to the few percent changes of the momentum
considered here is even smaller and will be neglected,
we setcosψ0 = cosψp. At typical BESSY II energies a
small change of the particle momentum hardly changes the
particle velocity. Therefore, the ‘frequency slip factor’ηp

can be well approximated by−αp andβp = β0. Taking
into account these approximations yields the simple result:

Q2
s,p

Q2
s,0

=
αp

α0

p0

p
.

The left-hand-side expression involving the synchrotron
tunes was measured by varying the rf-frequency, two typ-
ical examples of the measurements plotted asQs,p/Qs,0

are shown in Fig.1. It was shown by simulations, that
fluctuations of the measured points could be explained by
misalignment errors.
Replacingαp in the equation by its definition and rear-
ranging:

α0
dp

p0
=
dL

L

Q2
s,0

Q2
s,p

.

Integrating both sides yields:

α0
p− p0

p0
=

∫
Q2

s,0

Q2
s,p

dL

L
.

The orbit changes can be expressed by appropriate rf-
frequency changesdL

L = −dfrf

frf
, which transforms the

integrant into only rf-depended terms:

α0
∆p
p0

= −
∫
Q2

s,0

Q2
s,p

dfrf

frf
= −

∫
Q2

s,0

Q2
s,p

dr

(1 + r)
.

For the last stepfrf was substituted by(1 + r)frf,0. The
whole integrant can be constructed from the measured data
and fitted by a polynomial of the typeai(∆frf/frf,0)i,
similar as shown in Fig.1, were a fit to the original data
was applied.
The polynomial can be integrated analytically

−α0
∆p
p0

=
∆frf

frf,0
+

1
2
a2 (

∆frf

frf,0
)2 +

1
3
a3 (

∆frf

frf,0
)3 + . . .

and the relative momentum deviation as a function of the
relative rf-detuning is obtained.
The integration smoothes the measured data, at this
point results of measured, fitted and simulated data
are compared, see Fig.2. Results are shown for two
examples with the most detuned chromaticities, at
ξx = +8.1 andξx = −5.5. Similar results from data for
ξx = +5.6, +2.2, −1.6 and − 5.2 are not presented
here. The simulation was done with the beam optical code
MAD [3] applying some minor adjustments, such as a 1%
change ofα0 and a small shift of the absolute momentum
scale.
The polynomial fit has the advantage, that critical numeri-

cal expressions of small numerator and denominator, such
as (∆frf/frf,0)/(∆p/p0) can be calculated analytically.
A second fit applied to the reverse functionr = r(∆p/p0)
yields the rf-detuning and the change of the orbit length as
a function of the momentum deviation:

−∆frf

frf,0
=

∆L
L0

=
∆p
p0

( α0+α1 (
∆p
p0

)+α2 (
∆p
p0

)2+. . .).
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Figure 2:(α−α0)∆p/p0 as as a function of the momentum
deviation∆p/p0. Two typical results forξx = +8.1 and
ξx = −5.5 are shown for measured, fitted and simulated
data. For the absolute scaling of the horizontal axisα0 =
7.34 · 10−4 was assumed.

Commonly, the coefficients of this last expansion (or a
similar one) are abbreviated byαi. The first term of this
series is by definitionα0

∆p
p0

. α0 can not be extracted from
these results, the valueα0 = 7.3 · 10−4 was used. Forα
follows the series expansion:

∆L
L0

/
∆p
p0

= α = α0 + α1 (
∆p
p0

) + α2 (
∆p
p0

)2 + . . . .

Fig.3 showsα/α0 as a function of the momentum devia-
tion. For a given momentum value this ratio gives the re-
quired correction of the rf-frequency, which is of the order
of ±30%, due to the influence of higher order terms of the
momentum compaction factor.

3 THE MEASUREMENTS

The transverse and longitudinal tunes were measured at
beam currents of around 10 mA. The coherent beam signal
in all 3 directions was measured using a strip line signal and
analyzed with a ‘Rohde& Schwarz FSEA’ spectrum ana-
lyzer. The accuracy of the transverse and longitudinal tune
measurements are determined by the line width of the beam
tune signal, which was in the order of 0.5%. The vertical
chromaticity was not changed and kept atξy = 1.6, only
data for different horizontalξx-values were recorded. The
rf-frequency was detuned until beam loss. Beam loss by
critical transverse resonances was avoided by readjusting
the quadrupole settings if required; it was verified, that the
longitudinal tune was not influenced by this. For fixed hor-
izontal chromaticity but different values of vertical chro-
maticity it was confirmed, that the longitudinal tune is not
dependent on the vertical chromaticity. Different cavity
voltages showed also no influence on the normalized lon-
gitudinal tunes.

Figure 3: Momentum compaction factorα/α0 as a func-
tion of the momentum deviation∆p/p0. Start and end
point of each line indicate the range, were stable beam stor-
age is possible. The results of this figure are derived from
the polynomial fit.

4 SUMMARY AND CONCLUSION

The momentum compaction factor can be measured to a
very high accuracy by applying frequency based methods.
If fitted by a polynomial, the results shown in Fig.2. would
require a polynomial of 5th order. The value ofα0 was
yet not measured, but taken from a simulation code. In
case the momentum acceptance is calculated only with this
linear term, the estimated rf-frequency change needs a fur-
ther correction of the order of±30%, depending on the
chromaticity. As expected, the momentum compaction fac-
tor is very sensitive to the horizontal chromaticity. The
measured results could be excellent reproduced with the
simulation code MAD. From these measurements the mo-
mentum limits for stable beam storage was found to be
−4% < ∆p/p0 < +8%.
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