THE LATTICE OF THE 1.0 GeV VSX STORAGE RING

H. Takaki,[#] K. Harada, T. Koseki, N. Nakamura, Y. Kamiya, ISSP, U. of Tokyo Y. Kobayashi, KEK-PF

Abstract

The University of Tokyo has been promoting a future project to construct a third-generation VUV and Soft Xray light source (VSX). The VSX ring has an energy of 1.0 GeV, an emittance of about 0.7 nm•rad, a circumference of about 230 m and two 30 m long straight sections for insertion devices. The most significant characteristic of the VSX ring is that its emittance is below a diffraction limit for the photon energy of 100 eV. It can provide the VUV and Soft X-ray light with a above $1 0^{20}$ maximum brilliance [photons/sec/mm²/mrad²/0.1% b.w.] using a long undulator installed in 30 m long straight section.

1 INTRODUCTION

The University of Tokyo aims at constructing a thirdgeneration VUV and Soft X-ray light source (VSX) in the new Kashiwa Campus. In general, a "third-generation" light source is characterized by a low emittance and a long straight section for insertion devices.

Figure 1: The emittance versus the beam energy for the typical synchrotron light sources in the world.

The beam emittance of the VSX ring is able to reach the diffraction limit, $\varepsilon \sim \lambda/4$ where λ is the wavelength of the emitted photon. For the typical photon energy of 100 eV ($\lambda \sim 12$ nm), the diffraction limit is about 1 nm•rad. The minimum value of the beam emittance is 0.73 nm•rad, which is extremely small compared with the existing synchrotron light sources around the world (see Fig. 1). For a maximum current of 200 mA, the emittance becomes slightly larger than 1 nm•rad due to the intrabeam scattering.

The VSX ring has two 30 m long straight sections for insertion devices. The 27 m long undulator will be installed in one of them, which is capable of providing a unprecedentedly brilliant synchrotron light in the VUV region.

In the following sections, the lattice configuration, the linear optics, the chromaticity correction and the dynamic aperture are reported.

2 LATTICE

The storage ring has a shape of racetrack with a circumference of 230.2 m (see Fig. 2). It is composed of 22 *Normal Cells*, four *Matching Sections* including four *Half Cells* and two 30 m long straight sections. The *Half Cell* is slightly different from a half of *Normal Cell*.

Figure 2: The VSX ring layout

2.1 Normal Cell

The lattice configuration of the *Normal Cell* is of Theoretical Minimum Emittance type [1], which has an emittance smaller than the DBA type by a factor of three. The theoretical minimum emittance is given by,

$$\varepsilon_{x0}^{\min} = \frac{1}{12\sqrt{15}J_x} C_q \gamma^2 \left(\frac{2\pi}{N}\right)^3,\tag{1}$$

where $C_q = (55/32\sqrt{3})(hmc)$, J_x is the damping partition number and N is the number of bending magnets. As J_x is almost equal to 1 for the bending magnets of the separated function type, the theoretical minimum emittance is 0.56 nm•rad for N=24.

To realize this emittance in the VSX ring, the horizontal betatron function β_x and dispersion function η_x

[#] Email: takaki@issp.u-tokyo.ac.jp

should be 0.075 m and 0.0063 m at the center of a bending magnet. Thus a very small beam size less than 10 μ m is attained at the magnet center, so that a high brilliant light can be supplied to bending beamlines.

2.2 Matching Section

A *T*-*T*' Section (see Fig.2 and 3) is composed of a long straight section and two *Matching Sections*. The *Half Cell*, the section between SD and BH, reduces the η_x of *Normal Cells* to be zero. For the *T*-*T*' Section to be "transparent" for the non-linear effects and behave as a *Normal Cell*, the phase advances should be,

$\Delta \phi_x$	$=2\pi m +$	- φ _{x Normal Cell,}	(2)
	-			

$$\Delta \phi_{\rm y} = 2\pi n + \phi_{\rm y \, Normal \, Cell.} \tag{3}$$

For the VSX ring, m=1 and n=2 are chosen. Then the optics looks as if it were perfectly 24-fold symmetric for on-momentum particles.

Figure 3: The Matching Section layout

3 OPERATION MODE

Since the Touschek effect is severe for *Low Emittance Mode* (LEM), a moderate operation of *High Emittance Mode* (HEM) is prepared for easy commissioning and stable operation.

3.1 Low Emittance Mode

The emittance of *Low Emittance Mode* is 0.73 nm•rad. The fundamental parameters of this mode are listed in Table 1. The Touschek lifetime is 5 hours due to the small beam size, while the Coulomb lifetime is about 10 hours at 10^{-10} Torr.

Table 1:	Fundamenta	ıl pa	arameter	rs of	the	VSX	ring
		• .		r 7 \	、 、		

(Low Emiliance Mode)			
Energy		E [GeV]	1.0
			Theoretical
Lattice Type			Minimum
			Emittance
Superperiod		Ns	~24
Circumference		C [m]	230.2
Long Straight Section			30 m x 2
Natural Emittance		ε _{x0} [nm•rad]	0.732
Energy Spread		σ_E / E	5.67x10 ⁻⁴
Momentum Compaction Factor		α	4.49x10 ⁻⁴
Tune	Horizontal	$\nu_{\rm X}$	17.4

	Vertical	ν _y	7.71
Natural Chromaticity	Horizontal	ξx	-38.7
	Vertical	ξy	-39.3
Damping Time	Horizontal	$\tau_{\rm X}$ [msec]	39.6
	Vertical	τ_{y} [msec]	39.8
	Longitudinal	$\tau_{\rm Z} [{\rm msec}]$	19.9
Revolution Frequenc	у	frev[MHz]	1.302
RF Voltage		V _{RF} [MV]	0.5
RF Frequency		f _{RF} [MHz]	500.1
Synchrotron Tune		ν_{s}	0.0037
Bunch Length		σ_{Z} [mm]	2.52
RF-bucket Height		$(\Delta E/E)_{RF}$	0.040

Figure 5: The optics of the Matching Section (LEM)

The optics of the *Normal Cell* and the *Matching Section* are shown in Fig. 4 and 5. The parameters of magnets are listed in Table 2.

The chromaticity is corrected by only 2 families of sextupoles (SF, SD) in the *Normal Cells*, but the so-called harmonic sextupole is not used. The horizontal and vertical dynamic apertures after chromaticity correction are shown in Fig. 8.

3.2 High Emittance Mode

The emittance of *High Emittance Mode* is 2.6 nm•rad. The fundamental parameters of this mode are listed in Table 3. Touschek lifetime becomes over 10 hours. The optics of the *Normal Cell* and the *Matching Section* are shown in Fig. 6 and 7. The horizontal and vertical dynamic apertures after chromaticity correction are shown in Fig. 8.

Table 2: Parameters of Magnets				
		LEM	HEM	
В	[T]	1.450 [T]	1.450 [T]	
QF	B' l/B ρ [1/m]	1.664	-0.622	
QD	B' l/B ρ [1/m]	-0.715	0.630	
SF	$(B'' l/B \rho) [1/m^2]$	33.168	-7.590	
SD	$(B'' l/B \rho) [1/m^2]$	-26.747	4.015	

Table 3: Parameters for High Emittance Mode			
Natural Emittance	ε_{x0} [nm•rad]	2.64	
Momentum Compaction Factor	α	1.02×10^{-3}	
Natural Chromaticity Horizontal	ξ _x	-34.6	
Vertical	ξy	-18.7	
RF Voltage	V _{RF} [MV]	0.7	
Bunch Length	σ _z [mm]	3.20	
RF-bucket Height	$(\Delta E/E)_{RF}$	0.032	

Figure 6: The optics of the *Normal Cell* (HEM) Figure 7: The optics of the *Matching Section* (HEM) Figure 8: The horizontal and vertical dynamic apertures normalized by $\sqrt{\beta \varepsilon_{x0}}$.

4 REFERENCES

 Y. Kamiya and M. Kihara, "On the design guideline for the low emittance synchrotron radiation source", KEK 83-16.

