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Abstract

Classical formalism for synchrotron radiation interference
between short sources is applied to analytical formulation
of wiggler radiation in the low frequency domain.

1 INTRODUCTION

Considering the lasting interest in synchrotron radiation
(SR) for beam diagnostics [1], due also to raising specific
demand such as infrared SR [2], a detailed insight in the in-
terference phenomenon between separate radiating sources
and its understanding remains of concern. The case of
wiggler SR has already been addressed in terms of inter-
ference [3] and more recently implications of the low fre-
quency hypothesis have been discussed [4]. We re-visit the
subject with recently developed material [5] and derive by
this means a detailed analytical formulation of wiggler SR
in the low frequency domain.

2 ANALYTICAL MATERIAL

2.1 Low frequency model
In regular conditions of SR production the spectral angu-
lar energy density observed at large distancer (assumed

constant) is given by ∂3W
∂ω∂φ∂ψ = 2ε0c | r~̃E(φ, ψ, ω)|2 (the

r-independent quantityr~̃E = r ~̃E is introduced for sim-

plicity) where ~̃E(φ, ψ, ω) is the Fourier transform of the
radiated electric field~E(φ, ψ, t) (see Fig. 1) andω is the
observed frequency. In the low frequency domain one has

rẼσ(φ, ψ, ω) =
qγ

(2π)3/2ε0c

(
K − γφ

1 + (K − γφ)2 + γ2ψ2

+
K + γφ

1 + (K + γφ)2 + γ2ψ2

)
(1)

rẼπ(φ, ψ, ω) =
qγ

(2π)3/2ε0c
γψ

(
1

1 + (K − γφ)2 + γ2ψ2

− 1

1 + (K + γφ)2 + γ2ψ2

)

where indicesσ andπ designate polarisation components
respectively parallel to the bend plane and normal to~Eσ ;
anglesφ in the bend plane andψ normal to it define the
observation direction. Eqs. 1 holds over a fewrms aperture
(with γφrms = γψrms =

√
(1 +K2)) and up to a fraction

of ωlimit as defined by

ωlimit = ωc/(3K(1 +K2)) = γ2c/(L(1 +K2)) (2)

in which ωc = 3γ3c/2ρ is the critical frequency of the
standard formalism,γ is the Lorentz relativistic factor,ρ is
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Figure 1:Up : A three-dipole wiggler. Definition of observation
angleϕ in the bend plane.Down : Typical shape of the electric
field impulse3rEσ,π(ϕ,ψ, t) at the observer.

the curvature radius,α is the particle total deviation,L =
ρα is the trajectory length in the magnetic field, andK =
αγ/2 is the deflection parameter.

2.2 Interference

As one knows the underlying physics in SR interference is
in time coherence resulting from the geometrical arrange-
ment of sources, which entails space and frequency modu-
lation of the radiated signal. A series ofN sources radiate
electric field of the form

NEσ,π(φ, ψ, t) =
N∑
i=1

δ(t+ Ti) ∗ Eiσ,π(φ, ψ, t) (3)

whereEiσ,π(φ, ψ, t) describes the impulse from magneti,
Ti is the emission time of signali, δ is the Dirac distribu-
tion and∗ denotes the convolution product. The Fourier
transform gives the interferential amplitude density

NẼσ,π(φ, ψ, ω) =
N∑
i=1

eiωTiẼiσ,π(φ, ψ, ω) (4)

whose modulus square provides the energy density

∂3NWσ,π

∂ω∂φ∂ψ
= 2ε0c

( (∑N

i=1
rẼiσ,π cos(ωTi)

)2

+
(∑N

i=1
rẼiσ,π sin(ωTi)

)2
)

(5)
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TimesTi are obtained from the geometry of the magnet
assembly by combining the duration∆T = L

2γ2c(1 +
K2/3 + γ2(φ2 + ψ2)) of the impulse issued from a mag-
net, with the time of flight (in observer time)∆Td =
d

2γ2c (1 + γ2(φ2 + ψ2)) between magnets distantd.
Note that Eqs. 4, 5 involve the exact Fourier transform

of δ(t + Ti) hence possible low frequency approximation
validity domain depends only on the characteristics (L and
K) of SR sources, not on their distanced.
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Figure 2: Low frequency energy density from a three-dipole
wiggler (Eq. 6 for2.5 GeV electron, atω = 1.9 1015rad/s -
λ = 10−6m). The small boxes show the energy density from
the central (2/γ) dipole alone ; comparison reveals a damping of
about0.04/1 due to the wiggler interference. (g.phi and g.psi
stand for coordinatesγφ andγψ.)

3 SR FROM A 3-DIPOLE WIGGLER

For simplicity a single-bump wiggler based on (1/γ)- and
(2/γ)-deviation magnets1 is considered (Fig. 1). However
what follows can be extended to arbitraryN , and as well to
low frequency undulator radiation (N large andK < 1).

The low frequency limit simplifies intoωlimit ≈ ωc/6 =
γ2c / 2L (Eq. 2 withK = 1) leading for instance to valid-
ity rangeω < 4 1016 rad/s (λ > 40 10−9 m) for a2.5 GeV
electron traversing a,e.g., 670 kG, L = 5 10−2 m long
dipole. Fig. 1 shows the typical shape of electric field im-
pulse series so generated (Eq. 3 withN = 3), the total

1The latter has the merit of producing highest brightness low frequency
SR.
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Figure 3:Forward spectrum of wigglerσ component (Eq. 6), and
for comparison, spectra due to the central(2/γ)-deviation dipole
alone (K = 1 in Eq. 1), and due to body SR from a strong dipole
(regularK2

2/3(ω) shape).

duration of which is∆T |L
2 ,

K
2 ,φ=ϕ− K

2γ
+∆Td |φ=ϕ−K

γ

+∆T |φ=ϕ +∆Td |φ=ϕ+K
γ

+∆T |L
2 ,

K
2 ,φ=ϕ+ K

2γ
. Taking

the origin at the centre of the central dipole, times in Eq. 3
write,T2 = 0 and

−T1 = ∆T |L
2 ,

K
2 ,φ=ϕ− K

2γ
+∆Td |φ=ϕ−K

γ
+

1
2
∆T |φ=ϕ

+T3 =
1
2
∆T |φ=ϕ +∆Td |φ=ϕ+K

γ
+∆T |L

2 ,
K
2 ,φ=ϕ+ K

2γ

Fig. 2 shows the resulting interferencial patterns which ex-
press as

∂33Wσ,π

∂ω∂ϕ∂ψ = 2 ε0 c((
rẼσ,π|K

2 ,φ=ϕ− K
2γ

cos(ωT1) + rẼσ,π|−K,φ=ϕ

± rẼσ,π|K
2 ,φ=ϕ+ K

2γ
cos(ωT3)

)2

+
(
ST

)2
)

(6)

where(ST ) designates the complementarysin term. Fig. 3
compares the radiation spectrum from the wiggler to that
of a singleK = 1 dipole and to classical body SR from a
K � 1 dipole.
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