
A .NET ASSEMBLY FOR EPICS SIMPLE CHANNEL ACCESS*

C. Timossi, H. Nishimura, LBNL, Berkeley, CA, U.S.A.

Abstract
The Advanced Light Source (ALS) at Lawrence

Berkeley National Laboratory is starting a demonstration
project to re-write the control room operator interface
software using the .NET platform and the C#
programming language [1]. Simple Channel Access
(SCA) [2], developed at LBNL to simplify client access to
EPICS[3], will be replaced with a new .NET assembly,
ScaNET, that enables other .NET assemblies to access
accelerator data.

INTRODUCTION
We have reported earlier on our effort using the .NET

framework for accelerator applications [4],
interoperability with EPICS Channel Access (CA) and on
the feasibility of cross platform use [5]. Here we wish to
report on our efforts to scale-up ScaNET for use in a
complete re-write of the operator interface applications
for the ALS injector.

SCANET BACKGROUND
ScaNET is a .NET class-library assembly written in C#

meant for use by .NET applications needing CA client
functionality.. An assembly has the same file extensions
as a windows executable, either exe or dll, but has a
different file format that includes meta-data allowing it to
be self-describing.

Goals
The goals for ScaNET are somewhat conflicting:
• Provide a thin layer around the CA library which has

proven over many years to be a robust and high-
performance network layer for accelerator data
transport.

• Hide some of the details of the CA interface in a
class that is more intuitive to a .NET application
builder than the CA API.

Design
The design utilizes 2 classes. Als.Epics.ChannelAccess

is a static class that contains all the direct .NET to Ca.dll
mappings using the Platform Invoke (P/Invoke) interface
provided by .NET System.Runtime.InteropServices. This
class is used by Als.Epics.SimpleChannelAccces which
exposes a class more suitable for .NET applications.

Figure 1: Als.Epics.SimpleChannelAccess (Sca) utilizes
the Als.Epics.ChannelAccess to call into unmanaged code

TOOLS
The programming tools for .NET are worth special

mention. They have been an absolutely key element to
our progress.

Visual Studio 2008
One of the main motivators for adopting the .NET

framework is the power of the Visual Studio integrated
development environment. Especially notable are
IntelliSense, a technology which recognizes types during
an editing session allowing auto-completion and
providing documentation for the class being entered, the
symbolic debugger, and integrated unit testing.

 In addition to providing symbolic information for the
project being debugged, the debugger can be coupled with
a symbol server that allows names of windows system
calls to be displayed in the stack trace. Other symbolic
information, such as the CA system calls can also be
referenced in the debugger through the symbol server.

ScaNET makes heavy use of the integrated unit testing
feature of VS. Since ScaNET is still under development,
running the unit tests periodically help assure that code
changes in one area don’t break code in other areas.

Measuring Performance
MeasureIt [5] is an application, available for download,

that compares the CPU performance of various .NET
operations scaled to the CPU time for an empty static
function call. The source code can be modified to include
user code.

The author of MeasureIt has a good discussion of the
interpretation of performance measurements in general
with special comments on .NET.

Some of the output of MeasureIt is shown in Table1.

 __

* Work supported by the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

MOW02 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

34

Control Software: Applications and Tools

Table 1: Output of MeasureIt. Scaled where EmptyStaticFunction = 1.0 (2.9 nsec = 1.0 units)

Name Median Mean StdDev Min Max Samples

NOTHING [count=1000] 2.351 2.225 0.630 0.386 2.842 10

MethodCalls: EmptyStaticFunction() [count=1000 scale=10.0] 1.000 1.011 0.026 1.000 1.088 10

Loop 1K times [count=1000] 452.175 461.586 19.742 452.070 512.281 10

PInvoke: 10 FullTrustCall() (10 call average) [count=1000 scale=10.0] 5.702 5.783 0.133 5.656 5.972 10

PInvoke: PartialTrustCall() (10 call average) [count=1000 scale=10.0] 20.953 21.181 0.894 20.674 23.821 10

GroupGetDouble: Sca.GetDouble(grouped) [count=1000 scale=10.0] 6564.613 6573.730 55.253 6500.874 6686.501 10

GetDouble: Sca.GetDouble(ungrouped) [count=1000 scale=10.0] 42658.520 42792.610 259.964 42506.390 43238.630 10

Subversion Revision Control
Although CVS is still the main version control system

at use in the ALS, for the upgrade project, we are using
Subversion. The primary SVN client tool for Windows is
TortoiseSVN [6] which is implemented as a file explorer
extension.

DEVELOPMENT ISSUES
In the latest development cycle of ScaNET, there are a

few issues that stand out.

Error Handling and Error Logging
.NET encourages the use of exception handling in

methods for handling errors rather than to return error
codes. We found a heavy use of exceptions to be useful
during application development. At this stage the stack
trace dialog box that the system displays for unhandled
exceptions is useful. For production we decided that
ScaNET should not throw exceptions in as many cases
but should write to the Windows Event Log instead.
ScaNET of course has routines to return the status of
previous operations but it’s up to the application to check
that status.

A CA timeout is an example of an error which is
logged rather than handled with an exception. These
timeouts occur routinely but rarely. Usually a timeout can
be handled by simply asking for the value again. On the
other hand it’s very useful to record the fact that the
timeout occurs.

Interfacing Managed and Unmanaged Code

A .NET assembly runs under the management of the
.NET framework, in particular, under the management of
the Common Language Runtime. CLR garbage collection
is constantly shuffling objects in a memory area known as
the managed heap as object go out of scope. Code in
managed memory (managed code) has access to code in
unmanaged memory, such as the windows system dlls,
through InteropServices as illustrated in Figure 1. This
separation of managed and unmanaged areas has
implications in several areas.

On 64 bit Windows (Vista x64 or XP Pro x64) the
debugger cannot debug a combination of managed and

unmanaged code. So most development work has to be
done on 32 bit Windows.

By default, the CLR ‘walks the stack’ before a method
is called to check that all its callers have at least the same
privilege as it does (the callers can have greater
privilege). This behavior has known performance
penalties. Note in Table 1 that a fully trusted method call
through P/Invoke is almost 4 times faster than a partially
trusted method call. P/Invoke methods can be marked
with the attribute: SuppressUnmanage-Code-
SecurityAttribute to eliminate the stack walk. Setting this
attribute could be an important performance gain though
the gain is modest in the case of most calls to CA.

The P/Invoke interface is primarily used for managed
code to call into unmanaged code. However, a .NET
delegate can be used by unmanaged code to call into
managed code.

.NET Delegates and CA Events

A CA client can ask to be notified of changes in value
or state of a process variable through a callback
mechanism. On Windows, the callback function uses the
C calling convention (arguments passed from right to left)
with an event structure as an argument (passed by value).

.NET defines a type-safe function pointer know as a
delegate which can be used to implement callbacks.
ScaNET has delegates for CA event callbacks and
connection callbacks but we had some trouble getting
delegates to work reliably until VS 2008. There are
restrictions, naturally, on unmanaged code calling into
managed code. For example, an exception will be thrown
if unmanaged code tries to write to managed memory.

DEPLOYMENT
The installer file ScaNET.msi is used to install the

assembly in the ‘Program Files’ directory. This installer
must be executed with Admin privileges since it creates a
Windows Event Log.

A .NET assembly that is meant to be shared, like
ScaNET, could instead be installed in the file area known
as the Global Assembly Cache (GAC). There are some
advantages to installing it as a shared assembly but during
the development phase, we found this method to be too
cumbersome. A special tool, gacutil, or an installer file

Proceedings of PCaPAC08, Ljubljana, Slovenia MOW02

Classical Topics Control Software: Applications and Tools

35

has to be used to write to this area and these two methods
have some compatibility issues. Also, referencing an
assembly from the GAC in VS is not convenient.

FURTHER WORK
Error handling can use improvement. The Windows

event log is very convenient but breaks the compatibility
with the .NET platform on Linux (MONO). It would be
better to go back to standard .NET exception handling and
redirect the exceptions to a log file as a configuration
option.

The way CA events are now handled can be improved.
Currently the user creates a delegate to handle
subscriptions. It would be more natural for ScaNET to
handle the callback and generate a .NET event to
subscribers.

Unlike the original SCA, ScaNET does not try to
moderate the number of requests that the client can make
to an IOC. This is a real problem for many of the IOCs at
the ALS that run older hardware and older versions of
EPICS; they simply can’t handle the demand.

ACKNOWLEGEMENTS
We would like to thank Greg Portmann for his

leadership on the control room upgrade effort and Craig
Ikami for all his help setting up the control room systems.

REFERENCES
[1] ECMA-334 and ISO/IEC 23270
[2] http://www-controls.als.lbl.gov/

epics_collaboration/sca/
[3] Dalesio, et al. "The Experimental Physics and

Industrial Control System Architecture," submitted to
ICALEPCS, Berlin, Germany, Oct. 18-22, 1993.

[4] H. Nishimura and C. A. Timossi, “Control Room
Application Development Using .NET”, PCAPAC
2005

[5] H. Nishimura and C. Timossi, “Mono for Cross-
Platform Control System Environment”, PCAPAC
2006

[5] V. Morrison, “Measure Early and Often for
Performance”, MSDN Magazine, April 2008, Vol. 23,
No. 5, msdn2.microsoft.com/magazine/cc135911

[6] http://tortoisesvn.tigris.org/

MOW02 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

36

Control Software: Applications and Tools

