
TINE RELEASE 4 IN OPERATION

Philip Duval, Piotr Karol Bartkiewicz, Steve Williamson Herb, Honggong Wu, DESY, Hamburg
Stefan Weisse, DESY, Zeuthen

Abstract
The TINE [1] control system evolved in great part to

meet the needs of controlling a large accelerator the size
of HERA, where not only the size of the machine was a
determining criterion, but also the seamless integration of
different platforms and programming languages of the
many applications developers. In keeping pace with new
technologies and the new generation of accelerators such
as PETRA3, FLASH, PITZ and associated pre-
accelerators and beam lines, TINE has undergone a major
“face-lift” in its most recent version, 4.0.4, where
platforms such as Java and LabView are not only
supported, but emphasized. In addition, TINE Release 4
integrates video transport, the device layer, and central
services to a much greater extent than its predecessor.
We report here on many of the new features and how they
are currently being used in operations.

INTRODUCTION
Originally a spin-off of the ISOLDE control system [2],

TINE is now a mature control system, where a great deal
of developmental effort has gone into the control system
protocol itself, offering a multi-faceted and flexible API
with many alternatives for solving data flow problems.
As the TINE kernel is written in straight C and based on
Berkeley sockets, it has been ported to most available
operating systems. By the same token, a native java port
of TINE is currently being used extensively in the new
control systems of PETRA3 and its pre-accelerator chain,
as is LabView.

Over the past couple of years much effort has also been
spent in providing standardized access to hardware. This
has largely been realized through use of the Common
Device Interface (CDI) [3], the TINE Can Open Manager
(TICOM) [1,4], and the TINE Network Queue [1].

In order to keep pace with developers’ demands, correct
noted deficiencies, and take maximum advantage of the
technological advances in networks and communications,
TINE Release 3.31 has been ‘put on ice’ and has given
way to Release 4 (currently 4.0.4). We shall describe
below the additions, enhancements and improvements
that are now to be found in TINE Release 4.0.4.

OLD FEATURES
Before reporting on ‘what’s new’, we review some of

the ‘old’ features which, if not unique to TINE, are
certainly not mainstream in the controls community.

Multicasting
TINE offers at the API level a variety of data transport

mechanisms. The developer of course does not need to
know about any of these, as the default chosen by the
TINE kernel is in most cases appropriate. However under

certain (extreme) scenarios, making use of an alternative
transport can have a tremendous impact on scalability and
efficiency. For instance, when multiple clients are eating
up the network bandwidth or CPU load at the server, a
good solution is to use TINE multicasting, where all
clients essentially collapse to a single ‘network’ client.
Another use of multicasting corresponds to a producer-
consumer architecture, where the server simply sends
certain data into the system via multicast. This might
include beam and state parameters of the facility and
possibly cycle or pulse numbers.

Data Types
TINE servers can send data with any of the standard

primitive data types. A large set of ‘complex’ data types is
also available, whereby doublets, triplets or even
quadruplets of data can be sent atomically (e.g. a value-
status pair). In addition to this, the server developer can
define, register and use any structure type he desires using
the 'tagged structure' feature.

Multi-Channel Arrays
In addition to data types, a data object can have an

‘array’ type. This is in many cases ‘scalar’ (single value)
or ‘spectrum’ where the data object delivers for instance a
scope trace. TINE also allows a kind of serialization
where a data object can have array type ‘channel’. In
such cases the data consists of an array containing the
property values of all devices (of necessity having the
same settings and units). This is an enormously practical
feature for such entities as vacuum pressures, beam
position monitors (orbits), magnet PSC currents, etc. as
these can then be archived and retrieved as such.

Stock Properties
All TINE device servers have a standard set of

properties called “stock” properties which not only allow
information to be queried but in some cases manage
access control (such as “ACCESSLOCK”). In addition, a
standard set of property-specific meta-properties are also
available. Thus the history of a given property, or a list of
the devices implementing a specific property, can be
obtained.

NEW FEATURES

Data Objects
The major change in TINE release 4.0 concerns the

supported name lengths, where registered device and
property names for instance can now contain up to 64
characters.

 TINE data objects now also contain, in addition to the
data timestamp, a system supplied data stamp, and a

Proceedings of PCaPAC08, Ljubljana, Slovenia MOX01

Classical Topics Status Reports and Control System Overviews

1

server supplied data stamp. Data returned to a caller also
carries the transfer ‘reason’, and so can be queried as to
why the data was sent (data change, heartbeat, event,
etc.).

Name Space Changes
TINE is now systematically case insensitive regarding

name resolution. In addition, although the maximum
length for a registered device name is 64 characters, the
release-4.0 protocol supports sending device names with
extended lengths up to 1024 characters. Device ‘names’
of such lengths are of course not registered but are
sometimes used for instance when supplying a device
‘list’ to a CDI server or when accessing the stock property
“SRVLOGFILE” where the device name is used to carry
the file name and path specification.

Redirection
In TINE Release 4.0, a device server can redirect a call

to a completely different hierarchy of context, server,
device, and property. This is a significant improvement
over release 3.31 where the context (top of the hierarchy)
and device name were not allowed to change.

Tagged Structures
User defined tagged structures can, as of Release 4.0,

embed any other TINE format type as well as other
tagged structures.

Bitfields
Individual bits and bit fields contained within Integer

data can now be systematically encoded and acquired
using TINE bitfields. Registered bitfields are ‘tagged’
and are registered in a similar manner as tagged
structures.

Images and Video
Sending video via TINE is now more tightly integrated

into the system. A new data type CF_IMAGE
systematically specifies a video frame and all associated
characteristics. Other features of release 4.0 have been
honed to provide the most efficient video transfer
possible. This includes API calls to massage the maximal
transport unit (MTU) of UDP datagrams as well as calls
to allow ‘deep’ data binding of a video server’s image
frames (i.e. no double buffering).

Multicasting
Multicasting in release 4.0 no longer uses a single

multicast group for all servers but now makes use of
server-specific multicast groups. In this case the last 2
bytes of a server’s IP address identify the server’s
multicast group. This is used both in publish-subscribe
style multicasting as well was in sending TINE globals
via producer-consumer style multicasting

Alarms
The alarm messages in TINE release 4.0 now contain a

timestamp with millisecond precision and (more

importantly) the start time of the alarm. A TINE alarm
belongs to a device and has a ‘history’. An active alarm
has a start time and is periodically re-issued according to
circumstances (heartbeat, alarm data change, oscillation)
until the alarm is terminated. If the same device then re-
issues the same alarm, it is regarded as a new alarm and
will have a new start time.

Alarms can now carry up to 64 bytes of alarm-specific
data, a much-needed improvement over the 6 bytes
available to release 3.31 alarms.

Local Histories
The local history subsystem has also been much

improved in that it is now possible for a device server to
save worst-case, non-fragmented local history files. Here,
‘worst-case’ signifies a large file with room to handle all
records at the given access rate with no filtering. This
allows rapid archive data retrieval over long time periods
even on NTFS, where file fragmentation can seriously
impair performance. In addition, when operated in a
multi-threaded environment, calls to selected stock
properties (local history call among them) are handled on
a separate thread, independent of normal server activity.

Server Configuration
Device servers can be configured by API or more

commonly by configuration file(s). When configuration
files are used, this has traditionally been a set of comma
separated values (CSV) files. This is still possible for
release-4.0 servers, but can now be more logically
organized on the local file system. Furthermore, in place
of the CSV files, a single XML configuration file can
supply all or part of the server’s configuration parameters.

CENTRAL SERVICES
 The TINE central services have all been upgraded to
release-4.0 standards and in most cases have been
modified to take advantage of some of the new features.

Alarms
The Central Alarm Server (CAS) in a given context

monitors the alarms of a relevant set of device servers (a
list maintained by a control system administrator). It is
responsible for the final stage of alarm filtering, alarm
archiving and establishing ‘server-down’ alarms. Now
that the TINE alarm message always contain the alarm
stop time, the logic necessary to determine an alarm’s
duration is trivial.

Archive
Besides the local history archiving which can occur

directly at the device server, TINE offers a central
archiving system and an event based archive system.
The former concerns itself with the regular archiving of
machine parameters and latter with occasional archiving
of, for instance, post-mortem data following an event
signal.

MOX01 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

2

Status Reports and Control System Overviews

Globals
Certain aspects of a TINE control system are usually

provided via multicast in a pure producer-consumer
mode. A given TINE context has a designated globals
server which sends the (pre-configured) relevant beam
parameters out at a predefined rate (typically 1 Hz).
Similarly, TINE time synchronization requires a time
server multicasting the designated system time at 1 Hz.

Recently, another entity specific to a given context can
also exist, namely the “cycler.”, which multicasts a
system cycle number, to be used as a systematically data
stamp in a similar vein as the time server.

 CONFIGURATION AND RAD TOOLS
A number of tools are available to aid the development

of both server and client applications.
At the device server level, a significant number of the

servers now in operation at LINAC2, PIA, and DESY2
use CDI for interfacing to hardware. CDI servers are
implemented by constructing a hardware data base; no
custom server code need be written. Many of the
remaining device servers are written in java and make use
of a TINE java device server code generator [5]. Another
category of device server is written entirely in LabView
and makes use of the device server wizard to generate the
appropriate TINE configuration database. In such cases
the developer can concentrate on the business logic and
not worry about interfacing to control system clients.

At the client level, most new control system
applications are being written in java. A tremendous help
in writing these applications has been the advent of ACOP
beans[6], developed in collaboration with Cosylab [7]
which allow design-time browsing when a visual editor is
available and which generate relevant code when
connecting to an endpoint. Recently, the set of ACOP
beans has been expanded to include a video bean, which
integrates directly into the TINE video system.

COMMISSIONING
Beginning in July 2008, the LINAC2 accelerator used

for injecting into DESY2 and ultimately into DORIS and
PETRA3 came on line with many new control system
components, both hardware and software. Many of the
hardware components using the in-house SEDAC bus
were replaced with new equipment using the CAN bus.
The Common Device Interface (CDI) was likewise
getting its first taste of operations. And, the control
system moved from TINE release 3.31 to TINE release
4.0. In addition, most applications moved from windows
to java on the client side, and a significant number moved
from windows to java on the server side as well.
 It is not surprising that bugs, unforeseen use-cases,
incomplete implementations, lack of familiarity, and
insufficient diagnostic tools all led to occasional controls

problems. Fortunately, there was already some
operational experience with TINE 4.0 in the FLASH
accelerator; there is a high degree of interoperability
between TINE and the DOOCS [8] control system used
for FLASH, and some FLASH components, such as
magnet power supplies, use TINE device servers.

 Over the initial few weeks of operations, many bugs
were found and eliminated, the most insidious involving
concurrency problems with multiple threads. Equally
challenging was the need to sift through large amounts of
data quickly and consistently, as was the case with the
alarm viewer client during commissioning when it was
being handed thousands of alarms by the central alarm
server.

Nonetheless, as of mid October 2008, all known
controls problems have been tracked down and
eliminated, and LINAC2, PIA and DESY2 are running
stably with the new control system hardware and
software.

The interconnectivity to other control systems relevant
to PETRA III is either in place or ready for
commissioning. As alluded to above, DOOCS and TINE
can operate seamlessly together, so there is no hesitation
to re-use for PETRA, DOOCS servers used for some of
the vacuum elements in FLASH. Many power and
infrastructure channels running EPICS are likewise easily
integrated via Epics2Tine[8]. Most recently,
Tango2Tine[9] has been upgraded to support TINE
Release 4. This will be a useful component when
exchanging data with certain elements in the HASYLAB
beam line control.

REFERENCES
[1] http://tine.desy.de
[2] “A PC Based Control System for the CERN ISOLDE

Separators”, R. Billings et al, ICALEPCS ’91.
[3] “Using the Common Device Interface in TINE”,

P.Duval and H.Wu, PCaPAC’06.
[4] “Integration of CANopen-based Controllers with

TINE Control System for PETRA III”,
P.Bartkiewicz, et al, ICALEPCS 2007.

[5] “First Experiences with a Device Server Generator
for Server Applications for PETRA 3”, J. Wilgen,
these proceedings.

[6] “The ACOP Family of Beans: A Framework
Independent Approach,” J.Bobnar, et al, ICALEPCS
2007.

[7] http://www.cosylab.com
[8] http://doocs.desy.de
[9] “An EPICS to TINE Translator”, Z.Kakucs et al,

ICALEPCS 2001.
[10] ”EPICS to TANGO Translator”, R.Stefanic and

L.Geoffroy, ICALEPCS 2007.

Proceedings of PCaPAC08, Ljubljana, Slovenia MOX01

Classical Topics Status Reports and Control System Overviews

3

