
GENERIC VME INTERFACE FOR LINUX 2.6 KERNELS
A. Homs#, F. Sever, ESRF, Grenoble, France

Abstract
From the beginning of the ESRF both the machine and

the beamline control instrumentations were based on
VME bus diskless crates equipped with Motorola CPU
boards running OS-9. Several modernization steps were
performed to migrate from OS-9 to Linux running either
on the VME CPU or on a remote industrial PC, connected
to the crate using PCI/VME bus coupler. An initial
implementation of a generic VME driver interface was
developed for Linux 2.4 which allowed the same VME
driver code to work on the different platforms. This paper
presents the complete re-writing of the above VME layer
to fully conform to the abstract bus/device interface
provided in Linux 2.6 kernel. The new subsystem
separates the rolls of the VME hosts, controlling the target
bus, and VME devices, using generic bus functionality
exported by the hosts. It also features safe hot-plug device
detection and removal in SMP systems. The drivers for
the bus controllers and VME boards used at the ESRF
were ported to this new structure.

ESRF CONTROL SYSTEM EVOLUTION
Original System

The first implementation of the ESRF machine and
beamline (BL) control system used diskless VME crates
controlled by Motorola CPU boards running OS-9. The
low level hardware access was provided by device
drivers, composed by OS-9 modules and their
corresponding libraries. The board functionalities were
exported to the network through TACO, a client/server
control architecture based on RPC developed at the
ESRF. The device servers execute the commands
triggered by the TACO clients running on HP or SUN
workstations. Typical clients in the machine control
system are specific Graphical User Interfaces (GUIs),
while for the BLs the main experiment application is
SPEC, a command line interface (CLI).

Evolution on the eamlines
The VME CPU card was replaced by the SBS Bit3

PCI/VME bus coupler, directly connected through a fibre
optic link to an industrial PC [1]. It allows to control the
boards on one or several remote VME crates as if they
were connected locally, transmitting IRQs and allowing
DMA transfers. The operating system was SuSE/Linux
7.2 running on dual Pentium III CPUs at 1 GHz.

Evolution on the Machine
 On the machine side it was decided to keep local CPU
card in the crate. In order to increase hardware
performance, the Motorola CPU board was replaced by a
more powerful Intel CPU board (VP101 from Concurrent
Technologies) which includes Tundra Universe II

PCI/VME bus bridge. The chosen OS was Debian/Linux
3.0, providing better support to diskless systems.

In addition, to the VME instrumentation, PCI and cPCI
hardware was also added on both the BLs and the
machine, either by using PCI/cPCI bus extenders on
industrial PCs or CPU boards in cPCI crates. However,
the PCI instrumentation is out of the scope of this paper.

Software Implementation
Linux 2.2 and 2.4 kernels were initially used. The VME

driver interface was written to allow the same card drivers
to work in both hardware configurations [2]. However,
their binary code was highly dependent on the bus-
coupler implementation due to heavy use of C-macros,
making the code notably cryptic. The software layout for
Linux 2.4 drivers is shown in Fig. 1.

Figure 1: VME software layout for Linux 2.4

VME STRUCTURE IN LINUX 2.6
With the introduction at the ESRF of Linux 2.6 and its

new device model [3] the VME interface layer, now
called VME core, was completely redesigned. A new bus
type, vme, was created. Each vme bus in the system is
controlled by a vme_host and is used by one or more
vme_devices. The layout of the new VME subsystem
drivers is shown in Fig. 2.

Figure 2: VME software layout for Linux 2.6

In contrast to the Linux 2.4 implementation, the VME
card drivers are completely independent of the bus (host)

Kernel space

User space

Bus host driver

VME Bus library

VME core

 VME device driver

Kernel space

User space

Intel x86,
M68K,

PowerPC,
Pentium-VME

Bus coupler driver

Bus coupler library

VME interface

 VME device driver

#ahoms@esrf.fr

B

Proceedings of PCaPAC08, Ljubljana, Slovenia TUP001

Classical Topics Control Hardware and Low-Level Software

77

controller. The connection between vme_device and
vme_host is done via generic vme_host_operations
including probe and regular read/write cycles, vme_region
memory mapping and IRQ management (register, mask).
In the same way, VME devices are automatically created
and managed by means of a vme_driver structure,
specifying predefined I/O base addresses and IRQ vectors
as well as the corresponding file_operations. This model
is used in the other Linux kernel subsystems (PCI, USB,
SCSI, etc.), and it provides the maximum flexibility in
terms of compilation, run-time execution and long term
code evolution.

The two types of VME controllers used at the ESRF,
the SBS Bit-3 and the Tundra Universe II PCI/VME bus
bridges, were successfully ported to this architecture.
From the VME device side, the ESRF VPAP (motor
controller) and VCT6 (counter/timer), the Compcontrol
CC133 (encoder), and the ADAS ICV196 (digital I/O),
ICV150 (ADC) and ICV712/6 (DAC) were also ported to
the new structure.

Features of the New VME Subsystem
As mentioned before, a vme_host gives access a VME

bus. In the case of multiple SBS Bit-3 PCI/VME bus
couplers in the same PC, independent VME buses
(/dev/vme0, /dev/vme1, …) will be created in the system.
For each existing bus, the registered vme_driver will
probe for present boards at the predefined I/O addresses.
This operation is automatically done when a new
vme_driver is registered, or when a new vme_host is
available, emulating a hot-plug behaviour not supported
at the hardware level.

In order to be completely “hot-plug compliant”, when
the PCI/VME bus coupler is disconnected or the remote
VME crate is switched off the bus is disabled and the
corresponding vme_devices are automatically deleted. A
kernel thread is responsible of polling the status of the
available vme_hosts and triggering the probe for devices
if the bus becomes active again.

The system fully integrates the /sys filesystem (sysfs)
by exporting the bus/host resources (memory maps,
IRQs) and the device info (configuration and IRQ
statistics). In addition vme_class_devices are also created,
exporting the device major-minor numbers used by the
udev daemon for creating the user-space entry nodes
(/dev/vpap_01, …).

As shown in Fig. 1, generic access to a VME bus from
user space in Linux 2.4 was only possible through the bus
controller driver library, which in general has a
manufacturer specific interface. Besides, the VME drivers
were not aware of concurrent access through this library.
The Linux 2.6 implementation provides a generic VME
access library (Fig. 2), allowing the development of
“user-space” drivers that are handled in the same way
than VME kernel drivers. Locking mechanisms are
provided to the vme_host driver to avoid concurrent
access to the bus by users of its specific library.

A major feature of the VME subsystem is the support
of multi-CPU systems (SMP) and multi-threaded

applications. Special care was taken during its design to
ensure that all the operations are “hot-plug safe”, using
the appropriate kernel locking mechanisms (spin_locks,
semaphores and kobjects). In particular, a vme_device can
not disappear if a program is performing a non-blocking
read/write/ioctl operation in its driver. If it is a blocking
operation (vme_wait_event), the device can be deleted
and the system call fails with the corresponding error
notification. In addition, if another thread was also
blocked waiting for the first thread to release the device
(vme_down), it will also be notified that the device no
longer exists.

Finally, a binary interface version checking ensures that
the vme_host driver, the vme_driver and the user-space
driver will communicate to the VME core in a consistent
way. This allows the controlled evolution the three
interfaces when distributing binary packages.

Installation tatus
The new VME architecture has been introduced on the

BL and machine control systems since the first half of
2007. The current installation status is shown in Table 1.

Table 1: Current installation at the ESRF

Linux 2.4 Linux 2.6

VME
crates

Industrial
PCs

VME
crates

Industrial
PCs

Beamlines 63 49 15 11

Machine 49 5 5 59

FUTURE STEPS
• Move the project to Sourceforge.net
• Implement generic DMA access
• Integration into ESRF fast acquisition architecture [2]
• Port to recent kernels (currently runs on 2.6.9)

ACKNOWLEDGEMENTS
Have also participated in (previous stages of) the

development of this project: R. Hirst, S. Marguet, D.
Kimdon, M. Pérez, M.C. Domínguez, E. Papillon, D.
Beltrán, A. Beteva, P. Fajardo, J. Klora, A. Götz, P.
Mäkijärvi and B. Regad.

REFERENCES
[1] A. Götz, A. Homs, B. Regad, M. Pérez, P. Mäkijärvi,

W-D. Klotz, “Modernising the ESRF Control System
with Gnu/Linux”, Proceedings of ICALEPCS-2001,
San Jose, California, pp. 325-327 (2001).

[2] A. Homs-Purón, D. Beltrán, A. Beteva, M.C.
Domínguez, P. Fajardo, A. Götz, J. Klora, E. Papillon,
M. Pérez, “Linux/PCI: The ESRF Beamline Control
System Modernization”, Proceedings of ICALEPCS-
2003, Gyeongju, Korea, pp. 172-173 (2003).

[3] J. Corbet, A. Rubini, G. Kroah-Hartman, “Linux
Device Drivers”, 3rd edition, O’Reilly (2005)

S

TUP001 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

78

Control Hardware and Low-Level Software

