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Abstract 
From the beginning of the ESRF both the machine and 

the beamline control instrumentations were based on 
VME bus diskless crates equipped with Motorola CPU 
boards running OS-9. Several modernization steps were 
performed to migrate from OS-9 to Linux running either 
on the VME CPU or on a remote industrial PC, connected 
to the crate using PCI/VME bus coupler. An initial 
implementation of a generic VME driver interface was 
developed for Linux 2.4 which allowed the same VME 
driver code to work on the different platforms. This paper 
presents the complete re-writing of the above VME layer 
to fully conform to the abstract bus/device interface 
provided in Linux 2.6 kernel. The new subsystem 
separates the rolls of the VME hosts, controlling the target 
bus, and VME devices, using generic bus functionality 
exported by the hosts. It also features safe hot-plug device 
detection and removal in SMP systems. The drivers for 
the bus controllers and VME boards used at the ESRF 
were ported to this new structure. 

ESRF CONTROL SYSTEM EVOLUTION 
Original System 

The first implementation of the ESRF machine and 
beamline (BL) control system used diskless VME crates 
controlled by Motorola CPU boards running OS-9. The 
low level hardware access was provided by device 
drivers, composed by OS-9 modules and their 
corresponding libraries. The board functionalities were 
exported to the network through TACO, a client/server 
control architecture based on RPC developed at the 
ESRF. The device servers execute the commands 
triggered by the TACO clients running on HP or SUN 
workstations. Typical clients in the machine control 
system are specific Graphical User Interfaces (GUIs), 
while for the BLs the main experiment application is 
SPEC, a command line interface (CLI). 

Evolution on the eamlines 
The VME CPU card was replaced by the SBS Bit3 

PCI/VME bus coupler, directly connected through a fibre 
optic link to an industrial PC [1]. It allows to control the 
boards on one or several remote VME crates as if they 
were connected locally, transmitting IRQs and allowing 
DMA transfers. The operating system was SuSE/Linux 
7.2 running on dual Pentium III CPUs at 1 GHz. 

Evolution on the Machine 
    On the machine side it was decided to keep local CPU 
card in the crate. In order to increase hardware 
performance, the Motorola CPU board was replaced by a 
more powerful Intel CPU board (VP101 from Concurrent 
Technologies) which includes Tundra Universe II 

PCI/VME bus bridge. The chosen OS was Debian/Linux 
3.0, providing better support to diskless systems.  

In addition, to the VME instrumentation, PCI and cPCI 
hardware was also added on both the BLs and the 
machine, either by using PCI/cPCI bus extenders on 
industrial PCs or CPU boards in cPCI crates. However, 
the PCI instrumentation is out of the scope of this paper. 

Software Implementation 
Linux 2.2 and 2.4 kernels were initially used. The VME 

driver interface was written to allow the same card drivers 
to work in both hardware configurations [2]. However, 
their binary code was highly dependent on the bus-
coupler implementation due to heavy use of C-macros, 
making the code notably cryptic. The software layout for 
Linux 2.4 drivers is shown in Fig. 1. 

 
Figure 1: VME software layout for Linux 2.4 

VME STRUCTURE IN LINUX 2.6 
With the introduction at the ESRF of Linux 2.6 and its 

new device model [3] the VME interface layer, now 
called VME core, was completely redesigned. A new bus 
type, vme, was created. Each vme bus in the system is 
controlled by a vme_host and is used by one or more 
vme_devices. The layout of the new VME subsystem 
drivers is shown in Fig. 2. 

 
Figure 2: VME software layout for Linux 2.6 
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controller. The connection between vme_device and 
vme_host is done via generic vme_host_operations 
including probe and regular read/write cycles, vme_region 
memory mapping and IRQ management (register, mask). 
In the same way, VME devices are automatically created 
and managed by means of a vme_driver structure, 
specifying predefined I/O base addresses and IRQ vectors 
as well as the corresponding file_operations. This model 
is used in the other Linux kernel subsystems (PCI, USB, 
SCSI, etc.), and it provides the maximum flexibility in 
terms of compilation, run-time execution and long term 
code evolution. 

The two types of VME controllers used at the ESRF, 
the SBS Bit-3 and the Tundra Universe II PCI/VME bus 
bridges, were successfully ported to this architecture. 
From the VME device side, the ESRF VPAP (motor 
controller) and VCT6 (counter/timer), the Compcontrol 
CC133 (encoder), and the ADAS ICV196 (digital I/O), 
ICV150 (ADC) and ICV712/6 (DAC) were also ported to 
the new structure. 

Features of the New VME Subsystem 
As mentioned before, a vme_host gives access a VME 

bus. In the case of multiple SBS Bit-3 PCI/VME bus 
couplers in the same PC, independent VME buses 
(/dev/vme0, /dev/vme1, …) will be created in the system. 
For each existing bus, the registered vme_driver will 
probe for present boards at the predefined I/O addresses. 
This operation is automatically done when a new 
vme_driver is registered, or when a new vme_host is 
available, emulating a hot-plug behaviour not supported 
at the hardware level. 

In order to be completely “hot-plug compliant”, when 
the PCI/VME bus coupler is disconnected or the remote 
VME crate is switched off the bus is disabled and the 
corresponding vme_devices are automatically deleted. A 
kernel thread is responsible of polling the status of the 
available vme_hosts and triggering the probe for devices 
if the bus becomes active again. 

The system fully integrates the /sys filesystem (sysfs) 
by exporting the bus/host resources (memory maps, 
IRQs) and the device info (configuration and IRQ 
statistics). In addition vme_class_devices are also created, 
exporting the device major-minor numbers used by the 
udev daemon for creating the user-space entry nodes 
(/dev/vpap_01, …). 

As shown in Fig. 1, generic access to a VME bus from 
user space in Linux 2.4 was only possible through the bus 
controller driver library, which in general has a 
manufacturer specific interface. Besides, the VME drivers 
were not aware of concurrent access through this library. 
The Linux 2.6 implementation provides a generic VME 
access library (Fig. 2), allowing the development of 
“user-space” drivers that are handled in the same way 
than VME kernel drivers. Locking mechanisms are 
provided to the vme_host driver to avoid concurrent 
access to the bus by users of its specific library. 

A major feature of the VME subsystem is the support 
of multi-CPU systems (SMP) and multi-threaded 

applications. Special care was taken during its design to 
ensure that all the operations are “hot-plug safe”, using 
the appropriate kernel locking mechanisms (spin_locks, 
semaphores and kobjects). In particular, a vme_device can 
not disappear if a program is performing a non-blocking 
read/write/ioctl operation in its driver. If it is a blocking 
operation (vme_wait_event), the device can be deleted 
and the system call fails with the corresponding error 
notification. In addition, if another thread was also 
blocked waiting for the first thread to release the device 
(vme_down), it will also be notified that the device no 
longer exists.  

Finally, a binary interface version checking ensures that 
the vme_host driver, the vme_driver and the user-space 
driver will communicate to the VME core in a consistent 
way. This allows the controlled evolution the three 
interfaces when distributing binary packages.  

Installation tatus 
The new VME architecture has been introduced on the 

BL and machine control systems since the first half of 
2007. The current installation status is shown in Table 1. 

Table 1: Current installation at the ESRF 

Linux 2.4 Linux 2.6  

VME 
crates 

Industrial 
PCs 

VME 
crates 

Industrial 
PCs 

Beamlines 63 49 15 11 

Machine 49 5 5 59 

FUTURE STEPS 
• Move the project to Sourceforge.net 
• Implement generic DMA access 
• Integration into ESRF fast acquisition architecture [2] 
• Port to recent kernels (currently runs on 2.6.9) 
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