
PERFORMANCE TESTS OF DIGITAL SIGNAL PROCESSING FOR GSI
SYNCHROTRON BPMS*

K. Lang1, P.Forck1, T.Hoffmann1, G.Jansa2, P.Kowina1, U.Rauch1

1 Gesellschaft für Schwerionenforschung, Beam Diagnostics , Darmstadt, Germany
2 Cosylab D.D., Ljubljana, Slovenia

Abstract

The Beam Position Monitoring System at GSI heavy
ion synchrotron SIS18 consists of twelve shoe-box PUs.
Each of the four BPM plates is pre amplified and
connected to a Libera Hadron unit from I-Tech Company
for digitization and position calculation. The raw data of
one BPM sampled by 125 MS/s with 14 Bit ADCs are
reduced to about 20 MB/s by the onboard FPGA, using
digital filter algorithms, resulting in a bunch-by-bunch
position readout. In addition, different timing signals with
various requirements are used to verify the functionality
of the FPGA algorithms. For a closed orbit measurement,
the data of all twelve Liberas have to be read in parallel.
A built in Xilinx Rocket IO is used for data transport,
which allows up to 1GBit/s data output. Over a dedicated
network, the data are merged for further usage on a high
performance PC. We describe the general architecture,
parts of the FPGA design implementation and present
first performance tests.

INTRODUCTION

At present a BPM upgrade program was started at GSI
with the goal to implement different measurement modes
for the detection of the beam position. This system shall
also be used at the FAIR SIS100 and therefore upwards
scaleable because of the higher amount of BPM stations.

The measurement modes include closed orbit, turn-by-
turn, bunch-by-bunch and also tune measurement in
horizontal and vertical plane. The desired resolution is
0.1mm. In SIS18 the accelerating RF varies with large
dynamics from 850 kHz to 5 MHz. SIS 18 is operated
with four filled buckets. Position calculation is done
inside Liberas Xilinx Virtex II Pro FPGA[1] with a filter
algorithm to generate the integration windows for the
bunch signals.

To allow the different measurement modes without
interference each other, all bunch positions from all
BPMs will be concentrated at two server PCs in one
accelerator cycle. The operator has then the possibility to
choose, which measurement mode he wants to display.
For controlling, Front-End Software Architecture (FESA)
[2] from CERN is used and adapted to the requirements
of the GSI BPM System [3].

PERFORMANCE TEST
Hardware Setup
All analog signals of the pick-ups are transmitted via long
cables to a single electronics room. Thus all Liberas can

be placed in one 19” rack (Fig. 1). To build a dedicated
high performance network in which the Liberas can send
the position data to the server PCs, a Hewlett Packard
ProCurve 2900-24G switch is used, which connects data
from its Gigabit Ethernet (GbE) ports to 10 Gigabit
Ethernet (10GbE) Ports. These 10GbE ports are then
connected to the 10GbE adapters of the server PCs.

Figure 1: Schematic of BPM System with network
connections. Red arrows: dedicated high performance
network

One server PC is a system with two 2.0 GHz Quad-
Core Intel Xeon E5405 CPUs, 1333 MHz Front Side Bus
and 32 GB DDR2 RAM with a Scientific Linux OS. The
10GbE adapter installed in the server PCs is an Intel
10GbE-MAC-Controller 82598EX for PCI-X.

The Liberas and the server PCs also have extra ports, to
connect them to the GSI network to get access to them for
controlling.

Position Measurement
The goal of the new digital BPM system is the

determination of the beam position in a bunch-to-bunch
mode. For the bunch synchronous measurement three
separate steps are necessary: 1) baseline restoration, 2)
window generation and 3) integration of the bunch signal.
The algorithm for baseline restoration is presented in [4],
we focus on the FPGA implementation for window
generation and signal integration. The position of a bunch
is determined by calculating the integrals of the difference
and sum signal of two opposing pick-up plates (horizontal
or vertical). E.g. the horizontal beam position is
proportional to difference of the left and right plate signal

*Work supported by EU, project DIRACsecondary-Beams, contract
number 515873

.

Proceedings of PCaPAC08, Ljubljana, Slovenia TUP002

Classical Topics Control Hardware and Low-Level Software

79

divided by their sum. In order to clearly separate
successive bunches from each other and to integrate the
signals only over the bunch area, an exact integration
window must be generated (Fig 2).

Figure 2: Sum signal of bunches in one plane (red) and
generated integration windows (green)

The algorithm presented here generates the integration
windows by inspecting the sum signals to determine flat
regions between successive bunches [4]. To detect these
flat regions even in noisy signals, the incoming sum
values x(z) are continuously summed up, which leads to a
saw-tooth like signal. Afterwards this signal is filtered
with a median of the last five values that came in. After
this filter process, the window is set active, if additionally
eight successive values are strictly increasing.

In more detail, the algorithm works as follows: The
summation can be realized inside the FPGA with a simple
adder. For the median determination, a buffer of five
values in sorted order is used (Fig. 3). Each incoming
value x(z) is written to a shift register and also compared
in parallel with all five values in this sorted buffer, to
determine its new storing position. The value x(z)·z-5, that
came five clock signals before the actual value x(z), is
delayed with the shift register. Additionally, this delayed
value is compared in parallel with all values in the sorted
buffer, to determine the value that stayed in the buffer
since five clock cycles. This value has then to be removed
from the sorted buffer.

Figure 3: Example of sorted buffer after one clock cycle
with x(z)·z-2< x(z)< x(z)·z-4

In fact each cell of the sorted buffer is realized by a
multiplexer with three inputs and a registered output (D
flip-flop, dff, see Fig. 4). The inputs are connected to the
outputs of the left and the right cell and to x(z)

.

Exceptions are the cells at the border of the sorted buffer.
They have just two inputs: One for x(z) and one for the
output of their only neighbor cell.

With the result of the two simultaneous comparisons
the multiplexers are switched, so that the values that lie
between x(z) and x(z)·z-5 are moved by one cell into the
direction of x(z)·z-5 with the next clock cycle.
Simultaneously, x(z) is inserted into the correct place. The
median of the five values is now just the content of the
sorted buffers third cell.

This module only needs a latency time for the number
of values from which the median has to be determined
plus one clock cycle – in this case six. The width of the
median filter is free scalable bounded by the free space of
the FPGA.

These filtered values are put through a shift register for
eight values. These values are then compared with each
other, to look if they are strictly increasing. As long as
this precondition is fulfilled, the integration window is
active.

The integration of bunch data is then performed by
summing up the incoming signals while the integration
window is active. The position calculation itself is done
inside a pipelined divider.

Figure 4: Realization of the left three cells of the sorted
buffer.

Error Detection
For a consistent and synchronized data treatment, it is

absolutely necessary that the Server PC stores the position
data for bunches in correct order. Because of the high
dynamics of the bunch frequency and very different
bunch shapes, three error cases may occur from window
generation: A bunch generates no window, one bunch
generates multiple windows or one window is generated
over multiple bunches. These errors must not necessarily
occur for every BPM for the same bunch or bunches. If
this happens, it will lead to desynchronization.

To make it possible for the Server PC to detect such
errors, three timestamps are used for resynchronization.
One timestamp is the absolute time of the RF period in
which the integration window was found. The other two
timestamps represent the beginning and the end of the
integration window relative to the RF timestamp. With
this information it is possible for a server PC to check
whether one of the described errors occurred.

Furthermore two data fields are used (one for horizontal
and one for vertical plane) to display detected errors in
the analog signal, like e.g. clipping of the input signal or
poor signal intensity. Altogether, this leads to a data

.

.

TUP002 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

80

Control Hardware and Low-Level Software

record of 96 Bit for the position data of the two planes for
one bunch.

Because of the usage of the UDP there is no control
mechanism to get information if the server has correctly
received a frame. If a package were lost, the position data
on the server for an acceleration cycle would become
inconsistent. A counter field is added to the UDP data
frame, which is incremented by each sent frame, so that
the server has the possibility to check for inconsistencies.

Data Transfer
At the end of an acceleration cycle with 5MHz bunch

frequency, a data rate of 480 MBit/s of position data is
generated per BPM. For transmission to the server PCs
the User Data Protocol inside an Ethernet jumbo frame
with a maximum transfer unit of 9000 Byte is used. From
the MTU, 24 Byte are used for the IP Header and 8 Byte
for the UDP Header. This means 747 beam position data
records can be sent per frame. In addition to the MTU, 14
Bytes for the MAC Header and 4 Byte for the CRC
checksum are needed. Overall this leads to a real data rate
of about 483 MBit/s.

In Ethernet applications, a frame has to be sent in one
sequence without breaks. That means that the data content
of the frame has first to be buffered inside the FPGA
before it can be transmitted. The Xilinx FPGA of the
Libera provides several Dual Port RAM blocks, which
can be used for this purpose. After the buffer is filled with
the position data, its content has to be dumped to the
FPGA’s RocketIO for transmission. During this process,
the content of this buffer must not be changed, but due to
the running process of position measurement, data is still
generated. For this reason a second buffer has been
implemented, which can be filled while the other one is
dumped (Fig.5).

 Figure 5: Schematic of output buffers.

A finite state machine (FSM) is used to observe the
filling process and choose which buffer has to be filled.

The values of the header fields of the different OSI
Layers (MAC, IP and UDP) have to be constant for each
sent frame of one Libera, but it is necessary to configure
each Libera with individual MAC and IP addresses and
UDP Ports. To make the FPGA Design flexible enough, a
register block is used, which contains the complete data

of all OSI headers in correct order. The access to the
necessary header-fields is then allowed over Liberas
Single Board Computer (SBC).

The Dump FSM is triggered, when a buffer is full. It
then starts an address counter and decides which data has
to be transferred to the RocketIO. If the whole data of the
buffer was transmitted, a signal is sent to the Fill FSM
and the data switches to idle state. In this state, no data is
transmitted over the RocketIO.

TEST RESULTS
Tests with the use of one server PC showed, that it is

not capable of handling the whole amount of data, when
all twelve Liberas send with highest data rate. At first
Ethernet Type II Frames with an MTU of 1500 Bytes
were used with an expected data rate of about 4800
MBit/s by sending with six Liberas, which resulted in a
high amount of package loss on the 10GbE interface of
the server PC (Table 1). The use of jumbo Ethernet
frames with an MTU of 9000 Bytes didn’t bring
advancement. The monitor program of the ProCurve
Switch showed that this loss does not occur on the way
from the Liberas to the server PC, so that it must occur on
the way from the 10GbE adapter to the processor.

MTU(Byte) Packets/s MBit/s
1500 ~157600 ~1890
9000 ~26250 ~1890

Table 1: Results of Data Transfer Measurement from
Liberas to Server PC with Different MTUs

SUMMARY AND OUTLOOK
To solve the problems with the package loss, further

tests are planned with a different 10GbE adapter for the
server PC. If the necessary data rate for our whole system
can’t be reached, it is also possible to add a further server
PC, to reduce the incoming data for each one.

More detailed analysis of the window generation
algorithm showed, that it probably won’t work properly
for all beam parameters. For this case it is planned to
implement and test a so-called Double Threshold
Algorithm [5], which would cover the requirements for
both, SIS18 and SIS100.

REFERENCES
[1] Company Instrumentation Technology, www.i-

tech.si
[2] M. Arruat et al., “Front End Software Architecture”,

in Proc. of ICALEPCS07
[3] T. Hoffmann “FESA - The front-end software

architecture at FAIR”, these proceedings.
[4] A. Galatis et al., ”Digital Techniques in BPM

Measurements at GSI-SIS”, in Proc. of EPAC ’06
[5] U. Rauch et. al. Investigation on Base Band Tune

Measurments using Direct Digitized BPM Signals”,
in Proc. of 5th CARE-HHH-ABI Workshop 2007

“,

Proceedings of PCaPAC08, Ljubljana, Slovenia TUP002

Classical Topics Control Hardware and Low-Level Software

81

