
BUFFER MANAGER IMPLEMENTATION FOR THE
 FLASH DATA ACQUISITION SYSTEM

*V.Rybnikov, A.Aghababyan, G.Grygiel, O.Hensler, R.Kammering, L.Petrosyan, K.Rehlich

Abstract

The Free Electron Laser in Hamburg (FLASH[1]) at

DESY is a user facility. It produces laser light of short
wavelengths from the extreme ultraviolet down to soft X-
rays. To study, monitor and document the machine
performance and parameters and also to collect the results
of the user experiment measurements a fast data
acquisition (DAQ [2]) system has been developed. A
shared memory based buffer manager is the heart of the
system. It arranges collected data as events for every
LINAC shot. All events can be read by different
consumers simultaneously. LINAC feedback and
monitoring processes as well as experiment middle layer
servers are typical clients of the buffer manager. Any
client can also generate its own data and insert it into the
same event or produce its own one. The paper will focus
on the detailed implementation of the buffer manager and
its main features. The experience and the achieved
performance will be covered as well.

INTRODUCTION
FLASH is a complex machine containing about 1000

fast ADC channels distributed over tens of VME crates.
More then 40 fast cameras are being used both for
diagnostics and observation. In order to understand the
machine behaviour one has to be able to correlate any
diagnostics channels on the bunch-by-bunch level. In
order to cope with this task we have developed a fast data
acquisition system capable to write all required data with
the full machine repetition rate (5Hz with up to 800
bunches per shot).

The FLASH DAQ system is dedicated to the following
tasks: collecting LINAC beam relevant data in real time,
providing the data to feed-back and monitoring tools as
well as storing it for the off-line analysis. The DAQ
system also allows storing user experiments data. The
experiment can select any machine channels to be written
along with the experiment data for making further
correlations between the experiment measurements and
the LINAC state.

DAQ ARCHITECTURE
The FLASH DAQ architecture is very flexible and

scalable to satisfy the requirements of the machine
diagnostics subsystems as well as the experiments. It
allows integration of ‘short live time’ experiments.

The architecture of the DAQ system is shown in Fig.1.
All collected channels are split into two groups: fast (fast
ADCs, cameras) and slow (Magnet currents, etc.). Fast

data is sent by means of UDP multicast and collected by
the Fast Collectors. The slow collector receives data via
TCP.

 Figure 1: DAQ architecture
Both types of collectors are running on a powerful DAQ
server computer (SUN Fire E2900, 16 cores, 32 GB, 6x
1GBit Ethernet). The collectors write data to shared
memory segments controlled by the Buffer Manager
(BM). The BM allows any process running on the DAQ
server register either as data provider or as data consumer
or as both. The collectors act as providers. Middle Layer
servers use the collected data for special purpose operator
monitors and feed-back subsystems. They usually act as
data consumers, but if their data are required for off-line
analysis they can also register as the data providers and
write their calculated values to the BM. The Distributors
extract data from the BM according to lists of channels
received from the run control (RC) during the DAQ
configuration. The extracted channels as data streams are
pushed to the Event Builders which in turn stores the data
on a local disk (1.5 TB, not shown on the picture) in a
special optimized DAQ (RAW) format. The data from the
local disk is transferred to a remote disk (22TB) where
the machine data is kept for one month. The data for
experiments is moved to a long term tape storage called
Disk Cache (dCache)[3].

The RC process is in charge of the configuration and
monitoring the whole system. The RC makes use of a
Oracle Data Base to store all DAQ parameters. The

*Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany

TUP010 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

102

Control Software: Applications and Tools

Distributed Object Oriented Control System (DOOCS)
[4] is employed for inter process communication.

BUFFER MANAGER
The buffer manager is the heart of the system and

provides temporary data storage in memory, its
synchronization on the shot-by-shot basis and a fast
access for data reading to several data consumers
simultaneously. The detailed BM description is given
bellow.

Server Blocks
The data units the BM deals with are server blocks.

They are produced by the front-end servers running on
SPARC CPUs in case of VME crates with fast ADCs or
on PCs under Linux with cameras or experiment specific
hardware (e.g. compact PCI crates).

Fast ADCs channels digitizing devices of the same type
are typically controlled by one DOOCS server. ADC
clocks and triggers are generated by a hardware timing
system. Trigger signals are generated by the timing
system to start ADCs, trigger cameras and activate the
readout by the software. The signal from the timing
system contains the unique identifier (event ID) to
identify data belonging to the same machine shot. Every
front-end DOOCS server keeps the data for the most
recent 16 accelerator shots.

Before the server sends data out to the DAQ it has to
create a server block. Every server block consists of data
from the channels collected by the server headed with
additional information containing: time stamp, event ID,
server block name (part of the DOOCS name of the
server), status, trigger mask, number of channels in the
block and the total block size. Every channel included
into the server block consists of a channel header
containing the channel name, channel type, channel status
and channel data length. The channel data format depends
on the device type (Beam position monitor, Toroid,
Camera, etc.).

The front-end servers make use of a custom sender
library to transfer server blocks via network by means of
a multicast UDP protocol.

Events
All server blocks belonging to the same machine shot

are merged into an event. There are two event type
groups in the FLASH DAQ system: fast and slow. Fast
events contain server blocks either collected by the fast
collectors or generated by the middle layer servers. In
both cases the data belong to one accelerator shot. The
slow events consist of server blocks produced by the slow
collector pulling slowly (maximum 1Hz) varying data
from systems like PLC, etc.(e.g. vacuum, magnets, etc.).
All events have an event header followed by a number of
server blocks. The event header contains the following
fields: pattern, time stamp, event ID, event type, status,
trigger mask, number of server blocks and the total event
size including the tail that is just the total event size.

The Architecture
The BM combines a number of shared memory

segments and a library used by the buffer manager clients.
The architecture of the BM is shown in Fig.2. There are
two types of segments in the BM: control segments and
data segments. The control segments include a client
control and an event control ones. The client control
segment consists of several slots and dedicated to

 Figure 2: BM architecture
the registration of all processes willing to make use of the
BM.

Every process has to register by the BM for every event
type and a list of server blocks within the event of interest
either as a writer (producer) or a reader (consumer) or
both. One client has to use as many slots as required to
register all its requests.

The information in the clients slots contains: process
ID, last access time, event type, event count, client type (a
producer or a consumer), priority, number of server
blocks and their names. In addition every producer
provides the maximum rate it is capable to write its server
blocks. Every consumer in turn also provides information
about maximum rate it accepts the server blocks and its
control UDP port.

The event control segment also consists of several slots.
Every slot is on-fly used by the BM to build up an event.
The following fields are filled in the slot: event time
stamp, event ID, event type, trigger mask, event status,
time stamp of he first server block arrival, time stamp of
the last server block arrival, producer process ID, event
size, expected number of server blocks, number of filled
in server blocks, number of clients interested in the event.
The event slot fields are complete with the information
about the clients and server blocks. Two fields are filled
for every client: slot number in the clients control
segment and the client status regarding the event
processing. Every server block data containing: server
block name, server block data segment ID and its slot
number.

Both control segments are created by one of the clients
acting as the BM master. The run control is responsible
for the BM master assignment.

The server block data segments are created by the BM
producers. Every data segment is split into some number

Proceedings of PCaPAC08, Ljubljana, Slovenia TUP010

Classical Topics Control Software: Applications and Tools

103

of slots. One data slot is used for one server block written
by the producer - the owner of the segment.

In Operation
The BM master creates control segments according to

the parameters provided by the run control (number of
slots) and makes their initialization. After that all other
clients including the master can start the registration of
their requests. The RC takes care about the number of
slots in the control segments in order to guarantee all
request of the clients can be registered. The registration
and all other interactions with the buffer manager are
done via the BM library API written in C++. The
concurrent access to the BM is controlled by means of
semaphores located in the memory space of the control
and data segments.

The procedure of the fast event building is described
bellow. After the DAQ reaches the “run” state, all front-
end servers start to send their server blocks for every
accelerator shot. On receiving a server block the fast
collector writes it to a free slot of its server block data
segment. Writing server block to the slot automatically
checks if a new event slot in the event control segment is
required to start building a new event. If this is the case
then a new event slot is reserved. If event building where
this server block belongs to is already in progress then
only the server block registration in the corresponding
event slot is done. In both cases the fields “server block
name”, “segment ID” and “segment slot” are written to
the event slot. On the registration of the new server block
in the event slot all registered clients are checked with
respect to their request fulfilment. If there are requests
that need only the server blocks that have been already
collected then the corresponding clients are informed via
a UDP messages to the corresponding clients ports given
in the client control segment.

On getting such a message the client fulfils its call back
routines that perform required operations on the data of
the server blocks. Once the routine is over the BM
believes that the client has finished with the event. Its
status in the event slot is market as “done”. As soon as all
clients in the event slot have the status “done” the BM
consider the event as processed by all clients. After that
the client slot and all corresponding data slots are released
and can be used for building other events.

The buffer manager master has a watchdog thread that
checks out if some event slots are used too long (a
parameter in the BM master, usually 10 sec). If the event
building time exceeds this time the event slot and all
corresponding data segment slots are released (forced
clean-up).

At the end of the DAQ run all BM clients remove their
registrations. The BM master removes all shared memory
segments.

EXPERIENCE
Running the FLASH DAQ since the spring 2005 has

proved the correct choice of the system design and shared
memory based approach for the event building. The
buffer manager was verified reliably running at least at
the rate of ~50MB/s. Most of problems leading to forced
segments clean-up are traced to the incorrect behaviour of
clients.

CONCLUSIONS
The FLASH DAQ has been developed and now is

already reliable running more than 3 years. It provides a
powerful service of collecting diagnostics and experiment
data on the shot-by-shot basis.

Utilization of the shared memory for data collection
was proven as a very efficient approach both for the event
building and for the data access providing to the middle
layer servers that require synchronized data from various
sources in the FLASH.

REFERENCES
[1] Rossbach et al., “Generation of GW radiation pulses

from a VUV free-electron laser operating in the
femtosecond regime”. Phys. Rev. Let., vol. 88, p.
104802, 2002.

[2] A.Agababyan et al., “Multi-Processor Based Fast
Data Acquisition for a Free electron Laser and
Experiments”. IEEE Transactions on Nuclear
Science, Vol. 55 No. 1, February 2008

[3] M.Ernst, P.Fuhrmann, M.Gasthuber, T.Mkrtchyan,
C.Waldman, “dCache, a distributed storage data
caching system”, CHEP 2001, Beijing,
http://www.ihep.ac.cn/~chep01/

[4] G.Grygiel, O.Hensler, K.Rehlich, “DOOCS: a
Distributed Object Oriented Control System on PC’s
and Workstations”, PCaPAC96, DESY, Hamburg,
October 1996.

TUP010 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

104

Control Software: Applications and Tools

