
A .NET INTERFACE FOR CHANNEL ACCESS

G. Cox, STFC Daresbury Laboratory, U.K.

Abstract
The control system for Accelerators and Lasers In

Combined Experiments (ALICE) under construction at
Daresbury Laboratory uses EPICS and vxWorks on
VME64x. The client software in use during the
commissioning of the accelerator is based on PC consoles
running Red Hat Linux 9. Synoptic displays and
engineering panels are created using the Extensible
Display Manager (EDM) and other standard EPICS
extension software is used for archival, alarm handling
etc. A similar EPICS based control system is being used
for the commissioning of the Muon Ionisation Cooling
Experiment (MICE) under construction at the Rutherford
Appleton Laboratory. The Synchrotron Radiation Source
(SRS) control system uses a bespoke control system with
client software on PC consoles running Microsoft
Windows. We would like to employ a similar approach
for the operational client software on ALICE and MICE
with Channel Access (CA) clients running on Microsoft
Windows PC consoles. This paper presents the .NET
Channel Access interface developed at Daresbury and
showcases .NET client applications being developed for
both ALICE and MICE operations.

INTRODUCTION
CA clients for the commissioning of ALICE and MICE

are currently hosted on Linux PC consoles running a
Scientific Linux operating system. We will be migrating
to the Microsoft Windows platform for ALICE operations
and for the later phases of the MICE project. The
Electron Model for Many Applications (EMMA) non-
scaling Fast Field Alternating Gradient (FFAG)
accelerator currently under construction at Daresbury will
also be integrated into the ALICE control system and
utilise CA client software on the Windows platform.

A number of different options were investigated for
building CA clients on the Microsoft Windows platform.
These included ActiveX CA, Java CA (JCA), CA Java
(CAJ) [1], and calling native code in CA via C++.

Each of these options has its own advantages and
disadvantages. ActiveX CA is simple to use, however
performance is limited and Process Variable (PV) support
is incomplete compared to the records of an Input/Output
Controller (IOC).

JCA performance is again limited due to the
implementation using Java Native Interface (JNI), this is
improved by the CAJ native Java implementation.
Although, with Java’s rigid adherence to the notion of
write once, run anywhere it can be difficult to use to the
maximum the unique features and modes of working
within an individual desktop environment.

For best performance the calling of native code in the
CA dynamic-linked libraries (DLLs) can be used, but this

is a complex approach not ideally suited to rapid
application development of visual applications.

Microsoft is promoting .NET as its flagship
development platform. As such it seemed a logical way
forward for developing CA clients on the Microsoft
Windows platform. At the time of starting this
development there did not exist a full CA implementation
for the .NET platform.

THE MICROSOFT .NET FRAMEWORK
The Microsoft .NET Framework is a software

technology that is available with several Microsoft
Windows operating systems. It includes a large library of
pre-coded solutions to common programming needs and a
virtual machine that manages the execution of programs
written specifically for the framework. The .NET
Framework is a key Microsoft offering and is intended to
be used by new applications created for the Windows
platform.

The pre-coded solutions that form the framework's
Base Class Library cover a large range of programming
needs in a number of areas, including user interface, data
access, database connectivity, cryptography, web
application development, numeric algorithms, and
network communications. The class library is used by
developers who combine it with their own code to
produce applications.

Applications developed using the .NET Framework
execute in a software environment that manages the
application’s runtime requirements. Also part of the .NET
Framework, this runtime environment is known as the
Common Language Runtime (CLR). The CLR provides
the appearance of an application virtual machine so that
programmers need not consider the capabilities of the
specific CPU that will execute the program. The CLR
also provides other important services such as security,
memory management, and exception handling. The class
library and the CLR together compose the .NET
Framework.

Managed code is code that has its execution managed
by the .NET Framework CLR. Unmanaged code
executes outside of the control of the .NET CLR.
Unmanaged code may perform unsafe operations such as
pointer arithmetic and is used for accessing unmanaged
memory, calling Windows APIs, interfacing to
Component Object Model (COM) components, and
coding performance-critical methods which avoid the
overhead of the CLR.

Platform Invocation Services
Platform Invocation Services, commonly referred to as

P/Invoke, is a feature of Common Language
Infrastructure implementations, like Microsoft’s CLR,
that enables managed code to call native code in DLLs.

TUP022 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

134

Control Software: Applications and Tools

The native code is referenced via metadata that describes
functions exported from a native DLL.

Figure 1: Illustration of Platform Invoke.

.NET CHANNEL ACCESS INTERFACE
Platform Invoke has been used to create a

comprehensive CA implementation for the .NET
platform. Following this approach allows the .NET CA
implementation to be divorced from the internal
implementation of CA within EPICS base. The .NET CA
interface makes use of function calls to the EPICS 3.14
implementation of CA [2]. Provided the interface
exposed by the CA implementation of future versions of
EPICS base remains consistent, then the .NET CA
interface can be built and run against any 3.14 or above
version of EPICS.

This approach also enables the .NET CA interface to be
independent of any changes to the internal
implementation of CA in EPICS base. Any
improvements or bug fixes applied to the CA libraries of
EPICS base libraries can immediately be taken advantage
of by linking the .NET CA interface against the new
version of the CA libraries.

Development Tools
Initial development was carried out in C# within Visual

Studio 2003 (.NET 1.1), before upgrading to Visual
Studio 2005 (.NET 2.0) and then to Visual Studio 2008
(.NET 3.0 & 3.5).

Early versions of the interface utilising .NET 1.1 relied
upon having special versions of the EPICS base CA
libraries built using the .NET compiler. Upgrading from
.NET 1.1 to .NET 2.0 caused the interface to stop
working as callbacks from unmanaged code would lead
to memory access violations. This was due to major
changes by Microsoft to the .NET Framework between
version 1.1 and 2.0, including to the implemetation of
P/Invoke.

This technical problem with later versions of the .NET
Framework had prevented any serious .NET development
with CA getting off the ground. After lengthy
investigation it was found that defining the P/Invoke
callback function pointers with CDecl calling convention
prevented callbacks from unmanaged code causing
memory access violations.

The move to .NET 2.0 and the resolution of the
memory violations also removed the need for using a
special .NET build of the EPICS base CA libraries. The
interface can now be built and run against a ‘standard’
build of the EPICS 3.14 CA libraries.

Implementation
The implementation of the .NET interface consists of

the following areas:

DLL import declarations, callback delegate declarations,
structure declarations, static methods, constant
declarations and enumeration declarations.

The DLL import declarations allow managed code

within .NET applications to call unmanaged code within
the CA libraries. These declarations enable applications
to create and destroy CA contexts, create and destroy CA
channels, create and destroy subscriptions and to query
various attributes of a CA channel.

Many of the methods called within the unmanaged CA
libraries will receive and pass data back to managed code
via opaque pointers. An opaque pointer allows the calling
application to pass complex data into, and receive
complex data back from, the unmanaged library without
concerning itself with the format or contents of the
complex data.

In the .NET Framework pointers are considered to be
unsafe and as such cannot be used within managed code.
The framework provides the type IntPtr to allow pointers
to be passed and received, although no pointer arithmetic
is allowed. The IntPtr type can be used to marshal
opaque pointers to and from the unmanaged CA libraries
enabling the user of the .NET CA interface to be
unconcerned about the use of pointers.

To provide asynchronous event notification via CA, the
unmanaged libraries utilise callbacks. For these callbacks
to be received within managed code callback delegates
must be declared within the interface. As mentioned
earlier, these callback delegates must be declared with the
CDecl calling convention. Once a callback delegate has
been defined within managed code according to the
signature contained within the interface declaration it’s
address can be passed to the unmanaged CA library
enabling asynchronous event notification.

The methods of the unmanaged CA libraries also pass
and receive data in custom data structures. These data
structures must be defined within the .NET interface to
allow data to be exchanged with the unmanaged libraries.
As these data structures are used to marshal data between
managed and unmanaged code certain types must be
declared as unmanaged types and marshalled with care.
Character arrays are an example of a type that must be
marshalled this way.

In the implementation of the unmanaged CA library
many useful macros are defined within C header files. An
example application of one of these macros is to convert
EPICS database types to text. In the development
languages of the .NET framework no support exists for

Proceedings of PCaPAC08, Ljubljana, Slovenia TUP022

Classical Topics Control Software: Applications and Tools

135

defining C style macros. To create a full CA
implementation for .NET these macros must be
implemented as methods and declared within the interface
as public and static.

To complete the implementation constant declarations,
for example DBF types and DBF_TEXT types, and
enumerations, such a channel connection state, have been
added.

FUTURE DEVELOPMENT
The .NET CA interface has now reached a state where

it is being used to develop client applications for the
Windows platform. Due to the complete unmanaged CA
implementation being expansive and complex, required
CA functionality above and beyond what is already
implemented in the .NET interface is added as required.
The interface will grow as more client applications are
developed and the interface is expected to become a
complete .NET implementation of CA functionality.

To simplify client application development a .NET
Process Variable (PV) class library is being developed.
This PV library allows client application developers not
to require an understanding of the methods needed to
create and destroy CA contexts, channels and
subscriptions, as the class library will take care of this for
them.

The class library follows an object oriented approach
and contains a base PV class which exposes the common
properties of an EPICS PV and allows an application to
asynchronously connect to an EPICS PV and receive data
and events. This base PV class is then extended via
inheritance to include data formatting (for enumerated
types etc), alarm handling and colour PV implementation.

The PV class library has been used to begin building a
library of EPICS controls for the .NET framework [3].
These controls are intended to give an EDM-like way of
generating client applications for the Windows platform.
The control library allows developers to generate CA
client applications within any Visual Studio .NET
language without the need for any code to be written.
The control library currently contains a number of EDM-
like controls e.g. text box, label, symbol, button, menu
button, spin button, combo box, byte, related display.
This will be extended to add more controls to allow client
applications to be created in an EDM-like way on
Windows platforms.

CLIENT APPLICATIONS
The .NET CA interface with the class library and

components built on top of it are currently being used to
generate client applications for the ALICE control
system. They will also be used in future to generate client
applications for the EMMA and MICE control systems.
An example client application for the ALICE control
system is shown in Figure 2.

In the future it is intended to develop more generic
Windows applications for EPICS using the .NET CA
interface. These would include applications for alarm
handling, archive data retrieval and real-time plotting,
backup and restore tools etc.

Figure 2: Example C# application built with the .NET control
 library.

CONCLUSION
The decision to use Microsoft Windows as a possible

platform for operational application software for ALICE
and EMMA introduced the requirement to have a reliable
and efficient interface into CA for the Microsoft
Windows operating system. After investigating and
evaluating the current options for CA Windows client
development the decision was taken to develop a .NET
interface for CA.

Several technical issues were encountered during the
development of the interface, however these have now
been resolved and we now have a useable and reliable
.NET CA interface. The performance of the interface has
proven sufficient for all applications created so far, and
with the PV class library and .NET EPICS control library
we now have a simple and efficient way to develop CA
applications for the Windows platform.

REFERENCES
[1] M. Sekoranja, “Native Java Implementation of

Channel Access for EPICS”, ICALEPCS’05,
Geneva, October 2005, PO2.089-5

[2] Jeffrey O. Hill, “EPICS R3.14 Channel Access

Reference Manual”
 http://www.aps.anl.gov/epics/base/R3-14/9-

docs/CAref.html

[3] G. Cox, B.G. Martlew, A. Oates, “Channel Access

Clients on the Microsoft Windows Platform”,
ICALEPCS’07, Knoxville, October 2007, TPPA30

,

TUP022 Proceedings of PCaPAC08, Ljubljana, Slovenia

Classical Topics

136

Control Software: Applications and Tools

